Bacteriophage lysis: mechanism and regulation - PubMed (original) (raw)
Review
Bacteriophage lysis: mechanism and regulation
R Young. Microbiol Rev. 1992 Sep.
Abstract
Bacteriophage lysis involves at least two fundamentally different strategies. Most phages elaborate at least two proteins, one of which is a murein hydrolase, or lysin, and the other is a membrane protein, which is given the designation holin in this review. The function of the holin is to create a lesion in the cytoplasmic membrane through which the murein hydrolase passes to gain access to the murein layer. This is necessary because phage-encoded lysins never have secretory signal sequences and are thus incapable of unassisted escape from the cytoplasm. The holins, whose prototype is the lambda S protein, share a common organization in terms of the arrangement of charged and hydrophobic residues, and they may all contain at least two transmembrane helical domains. The available evidence suggests that holins oligomerize to form nonspecific holes and that this hole-forming step is the regulated step in phage lysis. The correct scheduling of the lysis event is as much an essential feature of holin function as is the hole formation itself. In the second strategy of lysis, used by the small single-stranded DNA phage phi X174 and the single-stranded RNA phage MS2, no murein hydrolase activity is synthesized. Instead, there is a single species of small membrane protein, unlike the holins in primary structure, which somehow causes disruption of the envelope. These lysis proteins function by activation of cellular autolysins. A host locus is required for the lytic function of the phi X174 lysis gene E.
Similar articles
- Holins: form and function in bacteriophage lysis.
Young R, Bläsi U. Young R, et al. FEMS Microbiol Rev. 1995 Aug;17(1-2):191-205. doi: 10.1111/j.1574-6976.1995.tb00202.x. FEMS Microbiol Rev. 1995. PMID: 7669346 Review. - Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis.
Bläsi U, Young R. Bläsi U, et al. Mol Microbiol. 1996 Aug;21(4):675-82. doi: 10.1046/j.1365-2958.1996.331395.x. Mol Microbiol. 1996. PMID: 8878031 Review. - Distribution and composition of the lysis cassette of Lactococcus lactis phages and functional analysis of bacteriophage ul36 holin.
Labrie S, Vukov N, Loessner MJ, Moineau S. Labrie S, et al. FEMS Microbiol Lett. 2004 Apr 1;233(1):37-43. doi: 10.1016/j.femsle.2004.01.038. FEMS Microbiol Lett. 2004. PMID: 15043867 - Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage phi adh.
Henrich B, Binishofer B, Bläsi U. Henrich B, et al. J Bacteriol. 1995 Feb;177(3):723-32. doi: 10.1128/jb.177.3.723-732.1995. J Bacteriol. 1995. PMID: 7836307 Free PMC article. - A Cytoplasmic Antiholin Is Embedded In Frame with the Holin in a Lactobacillus fermentum Bacteriophage.
Guo T, Xin Y, Zhang C, Kong J. Guo T, et al. Appl Environ Microbiol. 2018 Mar 1;84(6):e02518-17. doi: 10.1128/AEM.02518-17. Print 2018 Mar 15. Appl Environ Microbiol. 2018. PMID: 29305511 Free PMC article.
Cited by
- Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme.
Dessau M, Goldhill D, McBride R, Turner PE, Modis Y. Dessau M, et al. PLoS Genet. 2012;8(11):e1003102. doi: 10.1371/journal.pgen.1003102. Epub 2012 Nov 29. PLoS Genet. 2012. PMID: 23209446 Free PMC article. - Engineering Salmonella as intracellular factory for effective killing of tumour cells.
Camacho EM, Mesa-Pereira B, Medina C, Flores A, Santero E. Camacho EM, et al. Sci Rep. 2016 Jul 28;6:30591. doi: 10.1038/srep30591. Sci Rep. 2016. PMID: 27464652 Free PMC article. - Bacteriophage endolysins as novel antimicrobials.
Schmelcher M, Donovan DM, Loessner MJ. Schmelcher M, et al. Future Microbiol. 2012 Oct;7(10):1147-71. doi: 10.2217/fmb.12.97. Future Microbiol. 2012. PMID: 23030422 Free PMC article. Review. - The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5.
Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J 3rd, Lingohr EJ, Johnson RP. Kropinski AM, et al. Virol J. 2013 Mar 6;10:76. doi: 10.1186/1743-422X-10-76. Virol J. 2013. PMID: 23497209 Free PMC article. - Continuous Wave Electron Paramagnetic Resonance Spectroscopy Reveals the Structural Topology and Dynamic Properties of Active Pinholin S2168 in a Lipid Bilayer.
Ahammad T, Drew DL Jr, Sahu ID, Serafin RA, Clowes KR, Lorigan GA. Ahammad T, et al. J Phys Chem B. 2019 Sep 26;123(38):8048-8056. doi: 10.1021/acs.jpcb.9b06480. Epub 2019 Sep 16. J Phys Chem B. 2019. PMID: 31478671 Free PMC article.
References
- J Bacteriol. 1990 Oct;172(10):5617-23 - PubMed
- J Bacteriol. 1990 Sep;172(9):5516-9 - PubMed
- Trends Biochem Sci. 1990 Mar;15(3):93-5 - PubMed
- Gene. 1990 Sep 28;94(1):61-7 - PubMed
- Adv Biochem Eng Biotechnol. 1990;43:11-30 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources