NICOTONIC ACID BIOSYNTHESIS: CONTROL BY AN ENZYME THAT COMPETES WITH A SPONTANEOUS REACTION - PubMed (original) (raw)
NICOTONIC ACID BIOSYNTHESIS: CONTROL BY AN ENZYME THAT COMPETES WITH A SPONTANEOUS REACTION
A H MEHLER et al. Science. 1964.
Abstract
Extracts of livers from diabetic rats contain normal amounts of the enzymes needed to convert 3-hydroxyanthranilic acid to nicotinic acid nucleotide. The decreased capacity of diabetic animals to synthesize nicotinic acid is therefore attributed to increased amounts of picolinic carboxylase, which competes for a common intermediate with the spontaneous reaction in which quinolinic acid is formed as a precursor of nicotinic acid. These studies were facilitated by the synthesis of 3-hydroxyanthranilic acid labeled with carbon-14 in positions 3 and 6
Similar articles
- STUDIES ON CARBON DIOXIDE FIXATION IN NORMAL AND ALLOXAN-DIABETIC ANIMALS.
WAGLE SR, ASHMORE J. WAGLE SR, et al. Biochim Biophys Acta. 1963 Aug 13;74:564-5. doi: 10.1016/0006-3002(63)91405-7. Biochim Biophys Acta. 1963. PMID: 14071606 No abstract available. - METABOLISM OF 3-HYDROXYANTHRANILIC ACID-CARBOXYL-C14 IN THE HUMAN.
HANKES LV, BROWN RR, SCHMAELER M, LIPPINCOTT S. HANKES LV, et al. Proc Soc Exp Biol Med. 1964 Apr;115:1083-8. doi: 10.3181/00379727-115-29122. Proc Soc Exp Biol Med. 1964. PMID: 14166565 No abstract available. - STUDIES ON THE METABOLISM OF THE BENZENE RING OF TRYPTOPHAN IN MAMMALIAN TISSUES. II. ENZYMIC FORMATION OF ALPHA-AMINOMUCONIC ACID FROM 3-HYDROXYANTHRANILIC ACID.
ICHIYAMA A, NAKAMURA S, KAWAI H, HONJO T, NISHIZUKA Y, HAYAISHI O, SENOH S. ICHIYAMA A, et al. J Biol Chem. 1965 Feb;240:740-9. J Biol Chem. 1965. PMID: 14275130 No abstract available. - [Biochemistry of surplus synthesis of pyridine adenine dinucleotides].
Chagovets RV, Khalmuradov AG, Shushevich SI. Chagovets RV, et al. Ukr Biokhim Zh. 1970;42(2):191-200. Ukr Biokhim Zh. 1970. PMID: 4324480 Review. Ukrainian. No abstract available. - BIOSYNTHESIS OF ALKALOIDS.
LEETE E. LEETE E. Science. 1965 Feb 26;147(3661):1000-6. doi: 10.1126/science.147.3661.1000. Science. 1965. PMID: 14245774 Review. No abstract available.
Cited by
- The power of two: arginine 51 and arginine 239* from a neighboring subunit are essential for catalysis in α-amino-β-carboxymuconate-epsilon-semialdehyde decarboxylase.
Huo L, Davis I, Chen L, Liu A. Huo L, et al. J Biol Chem. 2013 Oct 25;288(43):30862-71. doi: 10.1074/jbc.M113.496869. Epub 2013 Sep 9. J Biol Chem. 2013. PMID: 24019523 Free PMC article. - Kynurenine Pathway Regulation at Its Critical Junctions with Fluctuation of Tryptophan.
Newton A, McCann L, Huo L, Liu A. Newton A, et al. Metabolites. 2023 Mar 30;13(4):500. doi: 10.3390/metabo13040500. Metabolites. 2023. PMID: 37110158 Free PMC article. - Evidence for a dual role of an active site histidine in α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase.
Huo L, Fielding AJ, Chen Y, Li T, Iwaki H, Hosler JP, Chen L, Hasegawa Y, Que L Jr, Liu A. Huo L, et al. Biochemistry. 2012 Jul 24;51(29):5811-21. doi: 10.1021/bi300635b. Epub 2012 Jul 12. Biochemistry. 2012. PMID: 22746257 Free PMC article. - Tryptophan and glucose metabolism in rat liver cells. The effects of DL-6-chlorotryptophan, 4-chloro-3-hydroxyanthranilate and pyrazinamide.
Cook JS, Pogson CI. Cook JS, et al. Biochem J. 1983 Aug 15;214(2):511-6. doi: 10.1042/bj2140511. Biochem J. 1983. PMID: 6688524 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous