New aspects of the repair and genotoxicity of psoralen photoinduced lesions in DNA - PubMed (original) (raw)

Comparative Study

. 1992 Jun 30;14(1-2):47-63.

doi: 10.1016/1011-1344(92)85082-6.

Affiliations

Comparative Study

New aspects of the repair and genotoxicity of psoralen photoinduced lesions in DNA

D Averbeck et al. J Photochem Photobiol B. 1992.

Abstract

Several approaches are described aiming at a better understanding of the genotoxicity of psoralen photoinduced lesions in DNA. Psoralens can photoinduce different types of photolesions including 3,4- and 4',5'-monoadducts and interstrand cross-links, oxidative damage (in the case of 3-carbethoxypsoralen (3-CPs)) and even pyrimidine dimers (in the case of 7-methylpyrido(3,4-c)psoralen (MePyPs)). The characterization and detection of different types of lesions has been essential for the analysis of their possible contributions to genotoxicity. For example, oxidative damage photoinduced by 3-CPs can be detected by the formamidopyrimidine glycosylase (FPG) protein. Furthermore, it is shown how the presence of MePyPs induced monoadducts may interfere with the photoreactivation of concomitantly induced pyrimidine dimers, how the ratio of monoadducts and interstrand cross-links (CL) affects the occurrence of double-strand breaks during the repair of photolesions and genotoxicity. In vitro treatment of yeast plasmids, followed by transformation, also indicates that the repair of photoadducts on exogenous DNA differs for 8-methoxy-psoralen (8-MOP) induced mono- and diadducts and for monoadducts alone. The recombinational rad52 dependent pathway is not needed for the repair of 8-MOP induced monoadducts. The results obtained suggest that the genotoxic effects of psoralens are conditioned by the nature, number, ratio and sequence distribution of the photolesions induced in DNA.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources