The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability - PubMed (original) (raw)
Comparative Study
The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability
Brazilian National Genome Project Consortium. Proc Natl Acad Sci U S A. 2003.
Abstract
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) approximately 500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.
Similar articles
- Tolerance to stress and environmental adaptability of Chromobacterium violaceum.
Hungria M, Nicolás MF, Guimarães CT, Jardim SN, Gomes EA, Vasconcelos AT. Hungria M, et al. Genet Mol Res. 2004 Mar 31;3(1):102-16. Genet Mol Res. 2004. PMID: 15100992 - Transport genes of Chromobacterium violaceum: an overview.
Grangeiro TB, Jorge DM, Bezerra WM, Vasconcelos AT, Simpson AJ. Grangeiro TB, et al. Genet Mol Res. 2004 Mar 31;3(1):117-33. Genet Mol Res. 2004. PMID: 15100993 Review. - Gene expression in Chromobacterium violaceum.
Silva R, Araripe JR, Rondinelli E, Urményi TP. Silva R, et al. Genet Mol Res. 2004 Mar 31;3(1):64-75. Genet Mol Res. 2004. PMID: 15100988 - Drug resistance in Chromobacterium violaceum.
Fantinatti-Garboggini F, Almeida Rd, Portillo Vdo A, Barbosa TA, Trevilato PB, Neto CE, Coêlho RD, Silva DW, Bartoleti LA, Hanna ES, Brocchi M, Manfio GP. Fantinatti-Garboggini F, et al. Genet Mol Res. 2004 Mar 31;3(1):134-47. Genet Mol Res. 2004. PMID: 15100994 - Chemotaxis and flagellar genes of Chromobacterium violaceum.
Pereira M, Parente JA, Bataus LA, Cardoso Dd, Soares RB, Soares CM. Pereira M, et al. Genet Mol Res. 2004 Mar 31;3(1):92-101. Genet Mol Res. 2004. PMID: 15100991 Review.
Cited by
- Production and Uptake of Distinct Endogenous Catecholate-Type Siderophores Are Required for Iron Acquisition and Virulence in Chromobacterium violaceum.
Batista BB, Santos RERS, Ricci-Azevedo R, da Silva Neto JF. Batista BB, et al. Infect Immun. 2019 Nov 18;87(12):e00577-19. doi: 10.1128/IAI.00577-19. Print 2019 Dec. Infect Immun. 2019. PMID: 31570563 Free PMC article. - The Regulatory Protein ChuP Connects Heme and Siderophore-Mediated Iron Acquisition Systems Required for Chromobacterium violaceum Virulence.
de Lima VM, Batista BB, da Silva Neto JF. de Lima VM, et al. Front Cell Infect Microbiol. 2022 May 11;12:873536. doi: 10.3389/fcimb.2022.873536. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 35646721 Free PMC article. - The MarR family regulator OsbR controls oxidative stress response, anaerobic nitrate respiration, and biofilm formation in Chromobacterium violaceum.
Alves JA, Previato-Mello M, Barroso KCM, Koide T, da Silva Neto JF. Alves JA, et al. BMC Microbiol. 2021 Nov 4;21(1):304. doi: 10.1186/s12866-021-02369-x. BMC Microbiol. 2021. PMID: 34736409 Free PMC article. - Identification and DNA annotation of a plasmid isolated from Chromobacterium violaceum.
Lima DC, Nyberg LK, Westerlund F, Batistuzzo de Medeiros SR. Lima DC, et al. Sci Rep. 2018 Mar 28;8(1):5327. doi: 10.1038/s41598-018-23708-5. Sci Rep. 2018. PMID: 29593241 Free PMC article. - Bioinformatics in Latin America and SoIBio impact, a tale of spin-off and expansion around genomes and protein structures.
De Las Rivas J, Bonavides-Martínez C, Campos-Laborie FJ. De Las Rivas J, et al. Brief Bioinform. 2019 Mar 22;20(2):390-397. doi: 10.1093/bib/bbx064. Brief Bioinform. 2019. PMID: 28981567 Free PMC article.
References
- Boisbaudran, L. (1882) Comp. Rend. Acad. Sci. 94, 562–562.
- Caldas, L. R. (1990) Cienc. Hoje 11, 55–57.
- Caldas, L. R., Leitão, A. A. C., Santos, S. M. & Tyrrell, R. M. (1978) in Proceedings of the International Symposium on Current Topics in Radiology and Photobiology, ed. Tyrrell, R. M. (Academia Brasileira de Ciências, Rio de Janeiro), pp. 121–126.
- Souza, A. O., Aily, D. C. G., Sato, D. N. & Durán, N. (1999) Rev. Inst. Adolfo Lutz 58, 59–62.
- Durán, N., Antonio, R. V., Haun, M. & Pilli, R. A. (1994) World J. Microbiol. Biotechnol. 10, 686–690. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases