The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR - PubMed (original) (raw)
The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR
Stephen P Diggle et al. Mol Microbiol. 2003 Oct.
Free article
Abstract
In Pseudomonas aeruginosa, diverse exoproduct virulence determinants are regulated via N-acylhomoserine lactone-dependent quorum sensing. Here we show that 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) is also an integral component of the quorum sensing circuitry and is required for the production of rhl-dependent exoproducts at the onset of stationary phase. Analysis of spent P. aeruginosa culture supernatants revealed that PQS is produced at the end of exponential phase in the parent strain and in the late stationary phase of a lasR mutant. Mutants defective in both PQS production (pqsR-) and response (pqsE-) produced substantially reduced levels of exoproducts but retained wild-type N-butanoyl homoserine lactone (C4-HSL) levels. In the wild type, provision of exogenous PQS at the time of inoculation significantly increased PA-IL lectin, pyocyanin and elastase production during early stationary phase and promoted biofilm formation. Exogenous PQS but not PQS derivatives lacking the 3-hydroxy group overcame the cell density but not growth phase-dependent production of exoproducts. PQS also overcame the transcriptional and post-transcriptional repression of lecA (which codes for the PA-IL lectin) mediated via the negative regulators MvaT and RsmA respectively. Increased expression of lecA in the presence of exogenous PQS can be explained partially by increases in RhlR, RpoS and C4-HSL levels. A refined model for quorum sensing in P. aeruginosa is presented.
Similar articles
- The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa.
McKnight SL, Iglewski BH, Pesci EC. McKnight SL, et al. J Bacteriol. 2000 May;182(10):2702-8. doi: 10.1128/JB.182.10.2702-2708.2000. J Bacteriol. 2000. PMID: 10781536 Free PMC article. - Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression.
Diggle SP, Winzer K, Lazdunski A, Williams P, Cámara M. Diggle SP, et al. J Bacteriol. 2002 May;184(10):2576-86. doi: 10.1128/JB.184.10.2576-2586.2002. J Bacteriol. 2002. PMID: 11976285 Free PMC article. - The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS.
Winzer K, Falconer C, Garber NC, Diggle SP, Camara M, Williams P. Winzer K, et al. J Bacteriol. 2000 Nov;182(22):6401-11. doi: 10.1128/JB.182.22.6401-6411.2000. J Bacteriol. 2000. PMID: 11053384 Free PMC article. - The third quorum-sensing system of Pseudomonas aeruginosa: Pseudomonas quinolone signal and the enigmatic PqsE protein.
García-Reyes S, Soberón-Chávez G, Cocotl-Yanez M. García-Reyes S, et al. J Med Microbiol. 2020 Jan;69(1):25-34. doi: 10.1099/jmm.0.001116. J Med Microbiol. 2020. PMID: 31794380 Review. - 4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives.
Diggle SP, Cornelis P, Williams P, Cámara M. Diggle SP, et al. Int J Med Microbiol. 2006 Apr;296(2-3):83-91. doi: 10.1016/j.ijmm.2006.01.038. Epub 2006 Feb 17. Int J Med Microbiol. 2006. PMID: 16483840 Review.
Cited by
- A novel phenolic derivative inhibits AHL-dependent quorum sensing signaling in Pseudomonas aeruginosa.
Bernabè G, Marzaro G, Di Pietra G, Otero A, Bellato M, Pauletto A, Scarpa M, Sut S, Chilin A, Dall'Acqua S, Brun P, Castagliuolo I. Bernabè G, et al. Front Pharmacol. 2022 Sep 20;13:996871. doi: 10.3389/fphar.2022.996871. eCollection 2022. Front Pharmacol. 2022. PMID: 36204236 Free PMC article. - Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.
Gökalsın B, Sesal NC. Gökalsın B, et al. World J Microbiol Biotechnol. 2016 Sep;32(9):150. doi: 10.1007/s11274-016-2105-5. Epub 2016 Jul 27. World J Microbiol Biotechnol. 2016. PMID: 27465850 - Pseudomonas aeruginosa overrides the virulence inducing effect of opioids when it senses an abundance of phosphate.
Zaborin A, Gerdes S, Holbrook C, Liu DC, Zaborina OY, Alverdy JC. Zaborin A, et al. PLoS One. 2012;7(4):e34883. doi: 10.1371/journal.pone.0034883. Epub 2012 Apr 13. PLoS One. 2012. PMID: 22514685 Free PMC article. - Hfq-binding small RNA PqsS regulates Pseudomonas aeruginosa pqs quorum sensing system and virulence.
Jia T, Bi X, Li M, Zhang C, Ren A, Li S, Zhou T, Zhang Y, Liu Y, Liu X, Deng Y, Liu B, Li G, Yang L. Jia T, et al. NPJ Biofilms Microbiomes. 2024 Sep 11;10(1):82. doi: 10.1038/s41522-024-00550-4. NPJ Biofilms Microbiomes. 2024. PMID: 39261499 Free PMC article. - Evolution of biofilm-adapted gene expression profiles in lasR-deficient clinical Pseudomonas aeruginosa isolates.
Jeske A, Arce-Rodriguez A, Thöming JG, Tomasch J, Häussler S. Jeske A, et al. NPJ Biofilms Microbiomes. 2022 Feb 14;8(1):6. doi: 10.1038/s41522-022-00268-1. NPJ Biofilms Microbiomes. 2022. PMID: 35165270 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous