Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice - PubMed (original) (raw)
Comparative Study
doi: 10.1152/jn.00665.2003. Epub 2003 Oct 1.
Affiliations
- PMID: 14523070
- DOI: 10.1152/jn.00665.2003
Free article
Comparative Study
Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice
Jason J Kuo et al. J Neurophysiol. 2004 Jan.
Free article
Abstract
ALS (amyotrophic lateral sclerosis) is an adult-onset and deadly neurodegenerative disease characterized by a progressive and selective loss of motoneurons. Transgenic mice overexpressing a mutated human gene (G93A) coding for the enzyme SOD1 (Cu/Zn superoxide dismutase) develop a motoneuron disease resembling ALS in humans. In this generally accepted ALS model, we tested the electrophysiological properties of individual embryonic and neonatal spinal motoneurons in culture by measuring a wide range of electrical properties influencing motoneuron excitability during current clamp. There were no differences in the motoneuron resting potential, input conductance, action potential shape, or afterhyperpolarization between G93A and control motoneurons. The relationship between the motoneuron's firing frequency and injected current (f-I relation) was altered. The slope of the f-I relation and the maximal firing rate of the G93A motoneurons were much greater than in the control motoneurons. Differences in spontaneous synaptic input were excluded as a cause of increased excitability. This finding identifies a markedly elevated intrinsic electrical excitability in cultured embryonic and neonatal mutant G93A spinal motoneurons. We conclude that the observed intrinsic motoneuron hyperexcitability is induced by the SOD1 toxic gain-of-function through an aberration in the process of action potential generation. This hyperexcitability may play a crucial role in the pathogenesis of ALS as the motoneurons were cultured from presymptomatic mice.
Similar articles
- Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1.
Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC. Jaarsma D, et al. Neurobiol Dis. 2000 Dec;7(6 Pt B):623-43. doi: 10.1006/nbdi.2000.0299. Neurobiol Dis. 2000. PMID: 11114261 - Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS.
Chang Q, Martin LJ. Chang Q, et al. Neurobiol Dis. 2016 Sep;93:78-95. doi: 10.1016/j.nbd.2016.04.009. Epub 2016 May 2. Neurobiol Dis. 2016. PMID: 27151771 Free PMC article. - Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis.
Bories C, Amendola J, Lamotte d'Incamps B, Durand J. Bories C, et al. Eur J Neurosci. 2007 Jan;25(2):451-9. doi: 10.1111/j.1460-9568.2007.05306.x. Eur J Neurosci. 2007. PMID: 17284186 - Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis.
Martin LJ, Chang Q. Martin LJ, et al. Mol Neurobiol. 2012 Feb;45(1):30-42. doi: 10.1007/s12035-011-8217-x. Epub 2011 Nov 10. Mol Neurobiol. 2012. PMID: 22072396 Free PMC article. Review. - Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis.
Durand J, Amendola J, Bories C, Lamotte d'Incamps B. Durand J, et al. J Physiol Paris. 2006 Mar-May;99(2-3):211-20. doi: 10.1016/j.jphysparis.2005.12.014. Epub 2006 Jan 30. J Physiol Paris. 2006. PMID: 16448809 Review.
Cited by
- Relaxation of synaptic inhibitory events as a compensatory mechanism in fetal SOD spinal motor networks.
Branchereau P, Martin E, Allain AE, Cazenave W, Supiot L, Hodeib F, Laupénie A, Dalvi U, Zhu H, Cattaert D. Branchereau P, et al. Elife. 2019 Dec 23;8:e51402. doi: 10.7554/eLife.51402. Elife. 2019. PMID: 31868588 Free PMC article. - Smn-Deficiency Increases the Intrinsic Excitability of Motoneurons.
Arumugam S, Garcera A, Soler RM, Tabares L. Arumugam S, et al. Front Cell Neurosci. 2017 Sep 5;11:269. doi: 10.3389/fncel.2017.00269. eCollection 2017. Front Cell Neurosci. 2017. PMID: 28928636 Free PMC article. - Progressive changes in synaptic inputs to motoneurons in adult sacral spinal cord of a mouse model of amyotrophic lateral sclerosis.
Jiang M, Schuster JE, Fu R, Siddique T, Heckman CJ. Jiang M, et al. J Neurosci. 2009 Dec 2;29(48):15031-8. doi: 10.1523/JNEUROSCI.0574-09.2009. J Neurosci. 2009. PMID: 19955354 Free PMC article. - Lack of sigma-1 receptor exacerbates ALS progression in mice.
Mavlyutov TA, Epstein ML, Verbny YI, Huerta MS, Zaitoun I, Ziskind-Conhaim L, Ruoho AE. Mavlyutov TA, et al. Neuroscience. 2013 Jun 14;240:129-34. doi: 10.1016/j.neuroscience.2013.02.035. Epub 2013 Feb 28. Neuroscience. 2013. PMID: 23458708 Free PMC article. - Inhibitory interneurons show early dysfunction in a SOD1 mouse model of amyotrophic lateral sclerosis.
Cavarsan CF, Steele PR, Genry LT, Reedich EJ, McCane LM, LaPre KJ, Puritz AC, Manuel M, Katenka N, Quinlan KA. Cavarsan CF, et al. J Physiol. 2023 Feb;601(3):647-667. doi: 10.1113/JP284192. Epub 2023 Jan 3. J Physiol. 2023. PMID: 36515374 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous