Local calcium signaling in neurons - PubMed (original) (raw)
Review
. 2003 Oct 9;40(2):331-46.
doi: 10.1016/s0896-6273(03)00639-1.
Affiliations
- PMID: 14556712
- DOI: 10.1016/s0896-6273(03)00639-1
Free article
Review
Local calcium signaling in neurons
George J Augustine et al. Neuron. 2003.
Free article
Abstract
Transient rises in the cytoplasmic concentration of calcium ions serve as second messenger signals that control many neuronal functions. Selective triggering of these functions is achieved through spatial localization of calcium signals. Several qualitatively different forms of local calcium signaling can be distinguished by the location of open calcium channels as well as by the distance between these channels and the calcium binding proteins that serve as the molecular targets of calcium action. Local calcium signaling is especially prominent at presynaptic active zones and postsynaptic densities, structures that are distinguished by highly organized macromolecular arrays that yield precise spatial arrangements of calcium signaling proteins. Similar forms of local calcium signaling may be employed throughout the nervous system, though much remains to be learned about the molecular underpinnings of these events.
Similar articles
- Control of K(Ca) channels by calcium nano/microdomains.
Fakler B, Adelman JP. Fakler B, et al. Neuron. 2008 Sep 25;59(6):873-81. doi: 10.1016/j.neuron.2008.09.001. Neuron. 2008. PMID: 18817728 Review. - Short-Term Facilitation at a Detonator Synapse Requires the Distinct Contribution of Multiple Types of Voltage-Gated Calcium Channels.
Chamberland S, Evstratova A, Tóth K. Chamberland S, et al. J Neurosci. 2017 May 10;37(19):4913-4927. doi: 10.1523/JNEUROSCI.0159-17.2017. Epub 2017 Apr 14. J Neurosci. 2017. PMID: 28411270 Free PMC article. - The spatial distribution of calcium signals in squid presynaptic terminals.
Smith SJ, Buchanan J, Osses LR, Charlton MP, Augustine GJ. Smith SJ, et al. J Physiol. 1993 Dec;472:573-93. doi: 10.1113/jphysiol.1993.sp019963. J Physiol. 1993. PMID: 8145162 Free PMC article. - Differential development of Ca2+ dynamics in presynaptic terminal and postsynaptic neuron of the rat auditory synapse.
Chuhma N, Ohmori H. Chuhma N, et al. Brain Res. 2001 Jun 22;904(2):341-4. doi: 10.1016/s0006-8993(01)02506-9. Brain Res. 2001. PMID: 11406132 - Presynaptic Ca2+ channels--integration centers for neuronal signaling pathways.
Evans RM, Zamponi GW. Evans RM, et al. Trends Neurosci. 2006 Nov;29(11):617-24. doi: 10.1016/j.tins.2006.08.006. Epub 2006 Aug 30. Trends Neurosci. 2006. PMID: 16942804 Review.
Cited by
- Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal.
Nadkarni S, Bartol TM, Stevens CF, Sejnowski TJ, Levine H. Nadkarni S, et al. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14657-62. doi: 10.1073/pnas.1211971109. Epub 2012 Aug 20. Proc Natl Acad Sci U S A. 2012. PMID: 22908295 Free PMC article. - 4-Аminopyridine sequesters intracellular Ca2+ which triggers exocytosis in excitable and non-excitable cells.
Kasatkina LA. Kasatkina LA. Sci Rep. 2016 Oct 5;6:34749. doi: 10.1038/srep34749. Sci Rep. 2016. PMID: 27703262 Free PMC article. - Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage.
Gall D, Prestori F, Sola E, D'Errico A, Roussel C, Forti L, Rossi P, D'Angelo E. Gall D, et al. J Neurosci. 2005 May 11;25(19):4813-22. doi: 10.1523/JNEUROSCI.0410-05.2005. J Neurosci. 2005. PMID: 15888657 Free PMC article. - Models of calcium dynamics in cerebellar granule cells.
Saftenku EÈ. Saftenku EÈ. Cerebellum. 2012 Mar;11(1):85-101. doi: 10.1007/s12311-010-0216-3. Cerebellum. 2012. PMID: 20922512 Review. - Monitoring transient Ca2+ dynamics with large-conductance Ca2+-dependent K+ channels at active zones in frog saccular hair cells.
Sy T, Grinnell AD, Peskoff A, Yazejian B. Sy T, et al. Neuroscience. 2010 Feb 3;165(3):715-22. doi: 10.1016/j.neuroscience.2009.11.003. Epub 2009 Nov 6. Neuroscience. 2010. PMID: 19897018 Free PMC article.