Electrostatic guidance of glycosyl cation migration along the reaction coordinate of uracil DNA glycosylase - PubMed (original) (raw)
. 2003 Nov 4;42(43):12455-60.
doi: 10.1021/bi035372+.
Affiliations
- PMID: 14580190
- DOI: 10.1021/bi035372+
Electrostatic guidance of glycosyl cation migration along the reaction coordinate of uracil DNA glycosylase
Mario A Bianchet et al. Biochemistry. 2003.
Abstract
The DNA repair enzyme uracil DNA glycosylase has been crystallized with a cationic 1-aza-2'-deoxyribose-containing DNA that mimics the ultimate transition state of the reaction in which the water nucleophile attacks the anomeric center of the oxacarbenium ion-uracil anion reaction intermediate. Comparison with substrate and product structures, and the previous structure of the intermediate determined by kinetic isotope effects, reveals an exquisite example of geometric strain, least atomic motion, and electrophile migration in biological catalysis. This structure provides a rare opportunity to reconstruct the detailed structural transformations that occur along an enzymatic reaction coordinate.
Similar articles
- Probing the limits of electrostatic catalysis by uracil DNA glycosylase using transition state mimicry and mutagenesis.
Jiang YL, Drohat AC, Ichikawa Y, Stivers JT. Jiang YL, et al. J Biol Chem. 2002 May 3;277(18):15385-92. doi: 10.1074/jbc.M200634200. Epub 2002 Feb 21. J Biol Chem. 2002. PMID: 11859082 - Powering DNA repair through substrate electrostatic interactions.
Jiang YL, Ichikawa Y, Song F, Stivers JT. Jiang YL, et al. Biochemistry. 2003 Feb 25;42(7):1922-9. doi: 10.1021/bi027014x. Biochemistry. 2003. PMID: 12590578 - Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate.
Werner RM, Stivers JT. Werner RM, et al. Biochemistry. 2000 Nov 21;39(46):14054-64. doi: 10.1021/bi0018178. Biochemistry. 2000. PMID: 11087352 - Uracil DNA glycosylase: insights from a master catalyst.
Stivers JT, Drohat AC. Stivers JT, et al. Arch Biochem Biophys. 2001 Dec 1;396(1):1-9. doi: 10.1006/abbi.2001.2605. Arch Biochem Biophys. 2001. PMID: 11716455 Review. - Atomic motion in enzymatic reaction coordinates.
Schramm VL, Shi W. Schramm VL, et al. Curr Opin Struct Biol. 2001 Dec;11(6):657-65. doi: 10.1016/s0959-440x(01)00269-x. Curr Opin Struct Biol. 2001. PMID: 11751045 Review.
Cited by
- Uracil-DNA glycosylase efficiency is modulated by substrate rigidity.
Orndorff PB, Poddar S, Owens AM, Kumari N, Ugaz BT, Amin S, Van Horn WD, van der Vaart A, Levitus M. Orndorff PB, et al. Sci Rep. 2023 Mar 8;13(1):3915. doi: 10.1038/s41598-023-30620-0. Sci Rep. 2023. PMID: 36890276 Free PMC article. - Structural Insights into the Mechanism of Base Excision by MBD4.
Pidugu LS, Bright H, Lin WJ, Majumdar C, Van Ostrand RP, David SS, Pozharski E, Drohat AC. Pidugu LS, et al. J Mol Biol. 2021 Jul 23;433(15):167097. doi: 10.1016/j.jmb.2021.167097. Epub 2021 Jun 6. J Mol Biol. 2021. PMID: 34107280 Free PMC article. - An effective human uracil-DNA glycosylase inhibitor targets the open pre-catalytic active site conformation.
Nguyen MT, Moiani D, Ahmed Z, Arvai AS, Namjoshi S, Shin DS, Fedorov Y, Selvik EJ, Jones DE, Pink J, Yan Y, Laverty DJ, Nagel ZD, Tainer JA, Gerson SL. Nguyen MT, et al. Prog Biophys Mol Biol. 2021 Aug;163:143-159. doi: 10.1016/j.pbiomolbio.2021.02.004. Epub 2021 Mar 3. Prog Biophys Mol Biol. 2021. PMID: 33675849 Free PMC article. - Targeting Base Excision Repair Glycosylases with DNA Containing Transition State Mimics Prepared via Click Chemistry.
Yuen PK, Green SA, Ashby J, Lay KT, Santra A, Chen X, Horvath MP, David SS. Yuen PK, et al. ACS Chem Biol. 2019 Jan 18;14(1):27-36. doi: 10.1021/acschembio.8b00771. Epub 2019 Jan 2. ACS Chem Biol. 2019. PMID: 30500207 Free PMC article. - Facilitated Diffusion Mechanisms in DNA Base Excision Repair and Transcriptional Activation.
Esadze A, Stivers JT. Esadze A, et al. Chem Rev. 2018 Dec 12;118(23):11298-11323. doi: 10.1021/acs.chemrev.8b00513. Epub 2018 Oct 31. Chem Rev. 2018. PMID: 30379068 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials