Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes - PubMed (original) (raw)
Comparative Study
. 2003 Nov 15;419(2):101-9.
doi: 10.1016/j.abb.2003.08.020.
Affiliations
- PMID: 14592453
- DOI: 10.1016/j.abb.2003.08.020
Comparative Study
Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes
Jose Antonio Chavez et al. Arch Biochem Biophys. 2003.
Abstract
A strong correlation between intramyocellular lipid concentrations and the severity of insulin resistance has fueled speculation that lipid oversupply to skeletal muscle, fat, or liver may desensitize these tissues to the anabolic effects of insulin. To identify free fatty acids (FFAs) capable of inhibiting insulin action, we treated 3T3-L1 adipocytes or C2C12 myotubes with either the saturated FFA palmitate (C16:0) or the monounsaturated FFA oleate (C18:1), which were shown previously to be the most prevalent FFAs in rat soleus and gastrocnemius muscles. In C2C12 myotubes, palmitate, but not oleate, inhibited insulin-stimulation of glycogen synthesis, as well as its activation of Akt/Protein Kinase B (PKB), an obligate intermediate in the regulation of anabolic metabolism. Palmitate also induced the accrual of ceramide and diacylglycerol (DAG), two lipid metabolites that have been shown to inhibit insulin signaling in cultured cells and to accumulate in insulin resistant tissues. Interestingly, in 3T3-L1 adipocytes, neither palmitate nor oleate inhibited glycogen synthesis or Akt/PKB activation, nor did they induce ceramide or DAG synthesis. Using myotubes, we also tested whether other saturated fatty acids blocked insulin signaling while promoting ceramide and DAG accumulation. The long-chain fatty acids stearate (18:0), arachidate (20:0), and lignocerate (24:0) reproduced palmitate's effects on these events, while saturated fatty acids with shorter hydrocarbon chains [i.e., laurate (12:0) and myristate (14:0)] failed to induce ceramide accumulation or inhibit Akt/PKB activation. Collectively these findings implicate excess delivery of long-chain fatty acids in the development of insulin resistance resulting from lipid oversupply to skeletal muscle.
Similar articles
- Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate.
Schmitz-Peiffer C, Craig DL, Biden TJ. Schmitz-Peiffer C, et al. J Biol Chem. 1999 Aug 20;274(34):24202-10. doi: 10.1074/jbc.274.34.24202. J Biol Chem. 1999. PMID: 10446195 - A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids.
Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA. Chavez JA, et al. J Biol Chem. 2003 Mar 21;278(12):10297-303. doi: 10.1074/jbc.M212307200. Epub 2003 Jan 13. J Biol Chem. 2003. PMID: 12525490 - Modulation of cellular insulin signaling and PTP1B effects by lipid metabolites in skeletal muscle cells.
Obanda DN, Cefalu WT. Obanda DN, et al. J Nutr Biochem. 2013 Aug;24(8):1529-37. doi: 10.1016/j.jnutbio.2012.12.014. Epub 2013 Mar 6. J Nutr Biochem. 2013. PMID: 23481236 Free PMC article. - Muscular diacylglycerol metabolism and insulin resistance.
Timmers S, Schrauwen P, de Vogel J. Timmers S, et al. Physiol Behav. 2008 May 23;94(2):242-51. doi: 10.1016/j.physbeh.2007.12.002. Epub 2007 Dec 14. Physiol Behav. 2008. PMID: 18207474 Review. - Insulin-sensitive phospholipid signaling systems and glucose transport. Update II.
Farese RV. Farese RV. Exp Biol Med (Maywood). 2001 Apr;226(4):283-95. doi: 10.1177/153537020122600404. Exp Biol Med (Maywood). 2001. PMID: 11368419 Review.
Cited by
- Marine Bromophenol Derivative 3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-isopropoxymethyl benzyl)benzene-1,2-diol Protects Hepatocytes from Lipid-Induced Cell Damage and Insulin Resistance via PTP1B Inhibition.
Luo J, Wu N, Jiang B, Wang L, Wang S, Li X, Wang B, Wang C, Shi D. Luo J, et al. Mar Drugs. 2015 Jul 17;13(7):4452-69. doi: 10.3390/md13074452. Mar Drugs. 2015. PMID: 26193288 Free PMC article. - The suppression of hepatic glucose production improves metabolism and insulin sensitivity in subcutaneous adipose tissue in mice.
Casteras S, Abdul-Wahed A, Soty M, Vulin F, Guillou H, Campana M, Le Stunff H, Pirola L, Rajas F, Mithieux G, Gautier-Stein A. Casteras S, et al. Diabetologia. 2016 Dec;59(12):2645-2653. doi: 10.1007/s00125-016-4097-y. Epub 2016 Sep 9. Diabetologia. 2016. PMID: 27631137 - Measurements of diacylglycerols in skeletal muscle by atmospheric pressure chemical ionization mass spectrometry.
Lee SY, Kim JR, Ha MY, Shim SM, Park TS. Lee SY, et al. Lipids. 2013 Mar;48(3):287-96. doi: 10.1007/s11745-013-3766-6. Epub 2013 Feb 8. Lipids. 2013. PMID: 23392774 - The effect of palmitate supplementation on gene expression profile in proliferating myoblasts.
Grabiec K, Majewska A, Wicik Z, Milewska M, Błaszczyk M, Grzelkowska-Kowalczyk K. Grabiec K, et al. Cell Biol Toxicol. 2016 Jun;32(3):185-98. doi: 10.1007/s10565-016-9324-2. Epub 2016 Apr 25. Cell Biol Toxicol. 2016. PMID: 27114085 Free PMC article. - Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes.
Zelezniak A, Pers TH, Soares S, Patti ME, Patil KR. Zelezniak A, et al. PLoS Comput Biol. 2010 Apr 1;6(4):e1000729. doi: 10.1371/journal.pcbi.1000729. PLoS Comput Biol. 2010. PMID: 20369014 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous