AlphaII-spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding - PubMed (original) (raw)
AlphaII-spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding
Björn Rotter et al. Biochem J. 2004.
Abstract
The spectrin-actin scaffold underlying the lipid bilayer is considered to participate in cell-shape stabilization and in the organization of specialized membrane subdomains. These structures are dynamic and likely to undergo frequent remodelling during changes in cell shape. Proteolysis of spectrin, which occurs during apoptosis, leads to destabilization of the scaffold. It is also one of the major processes involved in membrane remodelling. Spectrins, the main components of the membrane skeleton, are the targets for two important protease systems: m- and micro-calpains (Ca2+-activated proteases) and caspase-3 (activated during apoptosis). In this paper, we show that caspase-2 also targets spectrin in vitro, and we characterize Ca2+/calmodulin-dependent regulation of spectrin cleavage by caspases. Yeast two-hybrid screening reveals that the large isoform (1/L) of procaspase-2 specifically binds to alphaII-spectrin, while the short isoform does not. Like caspase-3, caspase-2 cleaves alphaII-spectrin in vitro at residue Asp-1185. This study emphasizes a role of executioner caspase for caspase-2. We also demonstrated that the executioner caspase-7 but not caspase-6 cleaves spectrin at residue Asp-1185 in vitro. This spectrin cleavage by caspases 2, 3 and 7 is inhibited by the Ca2+-dependent binding of calmodulin to spectrin. In contrast, calmodulin binding enhances spectrin cleavage by calpain at residue Tyr-1176. These results indicate that alphaII-spectrin cleavage is highly influenced by Ca2+ homoeostasis and calmodulin, which therefore represent potential regulators of the stability and the plasticity of the spectrin-based skeleton.
Similar articles
- Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways.
Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, Wang KK. Zhang Z, et al. Apoptosis. 2009 Nov;14(11):1289-98. doi: 10.1007/s10495-009-0405-z. Apoptosis. 2009. PMID: 19771521 - Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells.
Glantz SB, Cianci CD, Iyer R, Pradhan D, Wang KK, Morrow JS. Glantz SB, et al. Biochemistry. 2007 Jan 16;46(2):502-13. doi: 10.1021/bi061504y. Biochemistry. 2007. PMID: 17209560 Free PMC article. - Structure of the calmodulin alphaII-spectrin complex provides insight into the regulation of cell plasticity.
Simonovic M, Zhang Z, Cianci CD, Steitz TA, Morrow JS. Simonovic M, et al. J Biol Chem. 2006 Nov 10;281(45):34333-40. doi: 10.1074/jbc.M604613200. Epub 2006 Aug 31. J Biol Chem. 2006. PMID: 16945920 - Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies.
Lee WK, Thévenod F. Lee WK, et al. Biochem Pharmacol. 2008 Dec 1;76(11):1323-32. doi: 10.1016/j.bcp.2008.07.004. Epub 2008 Jul 11. Biochem Pharmacol. 2008. PMID: 18675256 Review. - Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis.
Harwood SM, Yaqoob MM, Allen DA. Harwood SM, et al. Ann Clin Biochem. 2005 Nov;42(Pt 6):415-31. doi: 10.1258/000456305774538238. Ann Clin Biochem. 2005. PMID: 16259792 Review.
Cited by
- Aggregation of spectrin and PKCtheta is an early hallmark of fludarabine/mitoxantrone/dexamethasone-induced apoptosis in Jurkat T and HL60 cells.
Dubielecka PM, Grzybek M, Kolondra A, Jaźwiec B, Draga A, Aleksandrowicz P, Kołodziejczyk M, Serwotka A, Dolińska-Krajewska B, Warchoł J, Kuliczkowski K, Sikorski AF. Dubielecka PM, et al. Mol Cell Biochem. 2010 Jun;339(1-2):63-77. doi: 10.1007/s11010-009-0370-4. Epub 2010 Jan 8. Mol Cell Biochem. 2010. PMID: 20058056 - DNA-PKcs-PIDDosome: a nuclear caspase-2-activating complex with role in G2/M checkpoint maintenance.
Shi M, Vivian CJ, Lee KJ, Ge C, Morotomi-Yano K, Manzl C, Bock F, Sato S, Tomomori-Sato C, Zhu R, Haug JS, Swanson SK, Washburn MP, Chen DJ, Chen BP, Villunger A, Florens L, Du C. Shi M, et al. Cell. 2009 Feb 6;136(3):508-20. doi: 10.1016/j.cell.2008.12.021. Cell. 2009. PMID: 19203584 Free PMC article. Retracted. - The role of spectrin in cell adhesion and cell-cell contact.
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF. Machnicka B, et al. Exp Biol Med (Maywood). 2019 Nov;244(15):1303-1312. doi: 10.1177/1535370219859003. Epub 2019 Jun 21. Exp Biol Med (Maywood). 2019. PMID: 31226892 Free PMC article. Review. - The vacuolar transporter chaperone (VTC) complex is required for microautophagy.
Uttenweiler A, Schwarz H, Neumann H, Mayer A. Uttenweiler A, et al. Mol Biol Cell. 2007 Jan;18(1):166-75. doi: 10.1091/mbc.e06-08-0664. Epub 2006 Nov 1. Mol Biol Cell. 2007. PMID: 17079729 Free PMC article. - Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences.
Maltsev VA, Reznikov V, Undrovinas NA, Sabbah HN, Undrovinas A. Maltsev VA, et al. Am J Physiol Heart Circ Physiol. 2008 Apr;294(4):H1597-608. doi: 10.1152/ajpheart.00484.2007. Epub 2008 Jan 18. Am J Physiol Heart Circ Physiol. 2008. PMID: 18203851 Free PMC article.
References
- J Biol Chem. 1999 Nov 12;274(46):32904-8 - PubMed
- Cell. 1994 Sep 9;78(5):739-50 - PubMed
- Curr Opin Hematol. 2000 Mar;7(2):123-9 - PubMed
- J Cell Biol. 2000 Mar 20;148(6):1255-65 - PubMed
- J Cell Biol. 2000 May 1;149(3):603-12 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous