Inhibition of rat sympathetic neuron apoptosis by ceramide. Role of p75NTR in ceramide generation - PubMed (original) (raw)

Inhibition of rat sympathetic neuron apoptosis by ceramide. Role of p75NTR in ceramide generation

Mee-Sook Song et al. Neuropharmacology. 2003 Dec.

Abstract

C6-ceramide protects sympathetic neurons from apoptosis caused by nerve growth factor (NGF) deprivation. Here, we report for the first time that ceramide generated "de novo" is also anti-apoptotic. Moreover, C6-ceramide is converted to long-chain ceramides in a process inhibited by fumonisin B1. The anti-apoptotic effect of C6-ceramide is due to the short analogue as to the long-chain ceramides. C6-ceramide shares mechanisms of action with NGF. C6-ceramide induces TrkA phosphorylation and selective activation of the phosphatidyl inositol 3-kinase (PI3-kinase)/Akt pathway but not the MAPK/ERK pathway. Importantly, the PI3-kinase inhibitor LY294002 abolishes the pro-survival effect of C6-ceramide. We identified a novel way to activate retrograde-mediated neuronal survival in the absence of NGF. Using compartmented cultures we show that addition of C6-ceramide exclusively to distal axons is sufficient to abort nuclear apoptosis. Our system offers a very unique alternative to understand the molecular bases of retrograde signaling in the absence of retrograde transport of neurotrophins. In search for a natural ligand that leads to ceramide generation we examined the activation of the sphingomyelin (SM) cycle downstream the p75 neurotrophin receptor (p75NTR). We found that in sympathetic neurons, selective activation of p75NTR by brain-derived neurotrophin factor or NGF plus K252a induces elevation of ceramide that correlates with SM hydrolysis. However, p75NTR activation does not generate sufficient ceramide to block apoptosis probably due to the rapid decrease in p75NTR expression that occurs upon NGF withdrawal.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources