Lateral gene transfer and the origins of prokaryotic groups - PubMed (original) (raw)
Review
Lateral gene transfer and the origins of prokaryotic groups
Yan Boucher et al. Annu Rev Genet. 2003.
Abstract
Lateral gene transfer (LGT) is now known to be a major force in the evolution of prokaryotic genomes. To date, most analyses have focused on either (a) verifying phylogenies of individual genes thought to have been transferred, or (b) estimating the fraction of individual genomes likely to have been introduced by transfer. Neither approach does justice to the ability of LGT to effect massive and complex transformations in basic biology. In some cases, such transformation will be manifested as the patchy distribution of a seemingly fundamental property (such as aerobiosis or nitrogen fixation) among the members of a group classically defined by the sharing of other properties (metabolic, morphological, or molecular, such as small subunit ribosomal RNA sequence). In other cases, the lineage of recipients so transformed may be seen to comprise a new group of high taxonomic rank ("class" or even "phylum"). Here we review evidence for an important role of LGT in the evolution of photosynthesis, aerobic respiration, nitrogen fixation, sulfate reduction, methylotrophy, isoprenoid biosynthesis, quorum sensing, flotation (gas vesicles), thermophily, and halophily. Sometimes transfer of complex gene clusters may have been involved, whereas other times separate exchanges of many genes must be invoked.
Similar articles
- Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea.
Zumft WG, Kroneck PM. Zumft WG, et al. Adv Microb Physiol. 2007;52:107-227. doi: 10.1016/S0065-2911(06)52003-X. Adv Microb Physiol. 2007. PMID: 17027372 Review. - A spectrum of verticality across genes.
Nagies FSP, Brueckner J, Tria FDK, Martin WF. Nagies FSP, et al. PLoS Genet. 2020 Nov 2;16(11):e1009200. doi: 10.1371/journal.pgen.1009200. eCollection 2020 Nov. PLoS Genet. 2020. PMID: 33137105 Free PMC article. - Retroids in archaea: phylogeny and lateral origins.
Rest JS, Mindell DP. Rest JS, et al. Mol Biol Evol. 2003 Jul;20(7):1134-42. doi: 10.1093/molbev/msg135. Epub 2003 May 30. Mol Biol Evol. 2003. PMID: 12777534 - The role of horizontal gene transfer in photosynthesis, oxygen production, and oxygen tolerance.
Raymond J. Raymond J. Methods Mol Biol. 2009;532:323-38. doi: 10.1007/978-1-60327-853-9_19. Methods Mol Biol. 2009. PMID: 19271194 Review.
Cited by
- Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin.
Merhej V, Raoult D. Merhej V, et al. Front Cell Infect Microbiol. 2012 Aug 28;2:113. doi: 10.3389/fcimb.2012.00113. eCollection 2012. Front Cell Infect Microbiol. 2012. PMID: 22973559 Free PMC article. Review. - Genome-scale comparative analysis of gene fusions, gene fissions, and the fungal tree of life.
Leonard G, Richards TA. Leonard G, et al. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21402-7. doi: 10.1073/pnas.1210909110. Epub 2012 Dec 10. Proc Natl Acad Sci U S A. 2012. PMID: 23236161 Free PMC article. - Genome-wide comparative analysis of phylogenetic trees: the prokaryotic forest of life.
Puigbò P, Wolf YI, Koonin EV. Puigbò P, et al. Methods Mol Biol. 2012;856:53-79. doi: 10.1007/978-1-61779-585-5_3. Methods Mol Biol. 2012. PMID: 22399455 Free PMC article. - Fungal metabolic gene clusters-caravans traveling across genomes and environments.
Wisecaver JH, Rokas A. Wisecaver JH, et al. Front Microbiol. 2015 Mar 3;6:161. doi: 10.3389/fmicb.2015.00161. eCollection 2015. Front Microbiol. 2015. PMID: 25784900 Free PMC article. Review. - Structure and Evolution of the Archaeal Lipid Synthesis Enzyme sn-Glycerol-1-phosphate Dehydrogenase.
Carbone V, Schofield LR, Zhang Y, Sang C, Dey D, Hannus IM, Martin WF, Sutherland-Smith AJ, Ronimus RS. Carbone V, et al. J Biol Chem. 2015 Aug 28;290(35):21690-704. doi: 10.1074/jbc.M115.647461. Epub 2015 Jul 14. J Biol Chem. 2015. PMID: 26175150 Free PMC article.