The VCAM-1 gene that encodes the vascular cell adhesion molecule is a target of the Sry-related high mobility group box gene, Sox18 - PubMed (original) (raw)
. 2004 Feb 13;279(7):5314-22.
doi: 10.1074/jbc.M308512200. Epub 2003 Nov 21.
Affiliations
- PMID: 14634005
- DOI: 10.1074/jbc.M308512200
Free article
The VCAM-1 gene that encodes the vascular cell adhesion molecule is a target of the Sry-related high mobility group box gene, Sox18
Brett M Hosking et al. J Biol Chem. 2004.
Free article
Abstract
VCAM-1 (vascular cell adhesion molecule-1) and Sox18 are involved in vascular development. VCAM-1 is an important adhesion molecule that is expressed on endothelial cells and has a critical role in endothelial activation, inflammation, lymphatic pathophysiology, and atherogenesis. The Sry-related high mobility group box factor Sox18 has previously been implicated in endothelial pathologies. Mutations in human and mouse Sox18 leads to hypotrichosis and lymphedema. Furthermore, both Sox18 and VCAM-1 have very similar spatio-temporal patterns of expression, which is suggestive of cross-talk. We use biochemical techniques, cell culture systems, and the ragged opossum (RaOP) mouse model with a naturally occurring mutation in Sox18 to demonstrate that VCAM-1 is an important target of Sox18. Transfection, site-specific mutagenesis, and gel shift analyses demonstrated that Sox18 directly targeted and trans-activated VCAM-1 expression. Importantly, the naturally occurring Sox18 mutant attenuates the expression and activation of VCAM-1 in vitro. Furthermore, in vivo quantitation of VCAM-1 mRNA levels in wild type and RaOP mice demonstrates that RaOP animals show a dramatic and significant reduction in VCAM-1 mRNA expression in lung, skin, and skeletal muscle. Our observation that the VCAM-1 gene is an important target of SOX18 provides the first molecular insights into the vascular abnormalities in the mouse mutant ragged and the human hypotrichosis-lymphedema-telangiectasia disorder.
Similar articles
- Inhibition of tumor angiogenesis by cell-permeable dominant negative SOX18 mutants.
Luo M, Guo XT, Yang W, Liu LQ, Li LW, Xin XY. Luo M, et al. Med Hypotheses. 2008;70(4):880-2. doi: 10.1016/j.mehy.2007.07.024. Epub 2007 Sep 4. Med Hypotheses. 2008. PMID: 17768012 - Cloning and functional analysis of the Sry-related HMG box gene, Sox18.
Hosking BM, Wyeth JR, Pennisi DJ, Wang SC, Koopman P, Muscat GE. Hosking BM, et al. Gene. 2001 Jan 10;262(1-2):239-47. doi: 10.1016/s0378-1119(00)00525-4. Gene. 2001. PMID: 11179689 - Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice.
Pennisi D, Gardner J, Chambers D, Hosking B, Peters J, Muscat G, Abbott C, Koopman P. Pennisi D, et al. Nat Genet. 2000 Apr;24(4):434-7. doi: 10.1038/74301. Nat Genet. 2000. PMID: 10742113 - SOX18 and the transcriptional regulation of blood vessel development.
Downes M, Koopman P. Downes M, et al. Trends Cardiovasc Med. 2001 Nov;11(8):318-24. doi: 10.1016/s1050-1738(01)00131-1. Trends Cardiovasc Med. 2001. PMID: 11728880 Review. - A novel autosomal dominant mutation in SOX18 resulting in a fatal case of hypotrichosis-lymphedema-telangiectasia syndrome.
Wangberg H, Wigby K, Jones MC. Wangberg H, et al. Am J Med Genet A. 2018 Dec;176(12):2824-2828. doi: 10.1002/ajmg.a.40532. Epub 2018 Dec 14. Am J Med Genet A. 2018. PMID: 30549413 Review.
Cited by
- The blood vasculature instructs lymphatic patterning in a SOX7-dependent manner.
Chiang IKN, Graus MS, Kirschnick N, Davidson T, Luu W, Harwood R, Jiang K, Li B, Wong YY, Moustaqil M, Lesieur E, Skoczylas R, Kouskoff V, Kazenwadel J, Arriola-Martinez L, Sierecki E, Gambin Y, Alitalo K, Kiefer F, Harvey NL, Francois M. Chiang IKN, et al. EMBO J. 2023 Mar 1;42(5):e109032. doi: 10.15252/embj.2021109032. Epub 2023 Jan 30. EMBO J. 2023. PMID: 36715213 Free PMC article. - Low Efficacy of Genetic Tests for the Diagnosis of Primary Lymphedema Prompts Novel Insights into the Underlying Molecular Pathways.
Bonetti G, Paolacci S, Samaja M, Maltese PE, Michelini S, Michelini S, Michelini S, Ricci M, Cestari M, Dautaj A, Medori MC, Bertelli M. Bonetti G, et al. Int J Mol Sci. 2022 Jul 3;23(13):7414. doi: 10.3390/ijms23137414. Int J Mol Sci. 2022. PMID: 35806420 Free PMC article. - A transcription factor is the target of propranolol treatment in infantile hemangioma.
Schrenk S, Boscolo E. Schrenk S, et al. J Clin Invest. 2022 Feb 1;132(3):e156863. doi: 10.1172/JCI156863. J Clin Invest. 2022. PMID: 35104803 Free PMC article. - Non-beta blocker enantiomers of propranolol and atenolol inhibit vasculogenesis in infantile hemangioma.
Seebauer CT, Graus MS, Huang L, McCann A, Wylie-Sears J, Fontaine F, Karnezis T, Zurakowski D, Staffa SJ, Meunier F, Mulliken JB, Bischoff J, Francois M. Seebauer CT, et al. J Clin Invest. 2022 Feb 1;132(3):e151109. doi: 10.1172/JCI151109. J Clin Invest. 2022. PMID: 34874911 Free PMC article. - Transcription Factor Control of Lymphatic Quiescence and Maturation of Lymphatic Neovessels in Development and Physiology.
Tabrizi ZB, Ahmed NS, Horder JL, Storr SJ, Benest AV. Tabrizi ZB, et al. Front Physiol. 2021 Nov 2;12:672987. doi: 10.3389/fphys.2021.672987. eCollection 2021. Front Physiol. 2021. PMID: 34795596 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous