Why are there so many carbohydrate-active enzyme-related genes in plants? - PubMed (original) (raw)
Why are there so many carbohydrate-active enzyme-related genes in plants?
Pedro M Coutinho et al. Trends Plant Sci. 2003 Dec.
Abstract
Plants contain far more carbohydrate-active enzyme-encoding genes than any other organism sequenced to date. The extremely large number of glycosidase and glycosyltransferase-related genes in plant genomes can be explained by the complex structure of the plant cell wall, by ancient genome duplication and by recent local duplications, but also by the recent emergence of novel and unrelated protein functions based on widely available pre-existing scaffolds.
Similar articles
- A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana.
Henrissat B, Coutinho PM, Davies GJ. Henrissat B, et al. Plant Mol Biol. 2001 Sep;47(1-2):55-72. Plant Mol Biol. 2001. PMID: 11554480 - Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era.
Davies GJ, Henrissat B. Davies GJ, et al. Biochem Soc Trans. 2002 Apr;30(2):291-7. Biochem Soc Trans. 2002. PMID: 12023867 Review. - Exploring genomes for glycosyltransferases.
Hansen SF, Bettler E, Rinnan A, Engelsen SB, Breton C. Hansen SF, et al. Mol Biosyst. 2010 Oct;6(10):1773-81. doi: 10.1039/c000238k. Epub 2010 Jun 17. Mol Biosyst. 2010. PMID: 20556308 Review. - Plant secondary metabolism glycosyltransferases: the emerging functional analysis.
Gachon CM, Langlois-Meurinne M, Saindrenan P. Gachon CM, et al. Trends Plant Sci. 2005 Nov;10(11):542-9. doi: 10.1016/j.tplants.2005.09.007. Epub 2005 Oct 7. Trends Plant Sci. 2005. PMID: 16214386 Review. - Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics.
Henrissat B, Davies GJ. Henrissat B, et al. Plant Physiol. 2000 Dec;124(4):1515-9. doi: 10.1104/pp.124.4.1515. Plant Physiol. 2000. PMID: 11115868 Free PMC article. No abstract available.
Cited by
- Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway.
Saint-Jore-Dupas C, Nebenführ A, Boulaflous A, Follet-Gueye ML, Plasson C, Hawes C, Driouich A, Faye L, Gomord V. Saint-Jore-Dupas C, et al. Plant Cell. 2006 Nov;18(11):3182-200. doi: 10.1105/tpc.105.036400. Epub 2006 Nov 30. Plant Cell. 2006. PMID: 17138701 Free PMC article. - Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana.
Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins GS, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij FE, Bowles D, Poppenberger B. Husar S, et al. BMC Plant Biol. 2011 Mar 24;11:51. doi: 10.1186/1471-2229-11-51. BMC Plant Biol. 2011. PMID: 21429230 Free PMC article. - Populus endo-glucanase 16 localizes to the cell walls of developing tissues.
Behar H, Mottiar Y, Chandrasekhar R, Grappadelli AC, Pauly M, Samuels AL, Mansfield SD, Brumer H. Behar H, et al. Plant Direct. 2023 Jan 30;7(2):e482. doi: 10.1002/pld3.482. eCollection 2023 Feb. Plant Direct. 2023. PMID: 36733272 Free PMC article. - PlantCAZyme: a database for plant carbohydrate-active enzymes.
Ekstrom A, Taujale R, McGinn N, Yin Y. Ekstrom A, et al. Database (Oxford). 2014 Aug 14;2014:bau079. doi: 10.1093/database/bau079. Print 2014. Database (Oxford). 2014. PMID: 25125445 Free PMC article. - Genome-Wide Analysis of Family-1 UDP-Glycosyltransferases in Potato (Solanum tuberosum L.): Identification, Phylogenetic Analysis and Determination of Response to Osmotic Stress.
Wu Y, Liu J, Jiao B, Wang T, Sun S, Huang B. Wu Y, et al. Genes (Basel). 2023 Nov 27;14(12):2144. doi: 10.3390/genes14122144. Genes (Basel). 2023. PMID: 38136966 Free PMC article.