Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways - PubMed (original) (raw)
doi: 10.1038/nbt919. Epub 2003 Dec 7.
Affiliations
- PMID: 14661025
- DOI: 10.1038/nbt919
Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways
Ainslie B Parsons et al. Nat Biotechnol. 2004 Jan.
Abstract
Bioactive compounds can be valuable research tools and drug leads, but it is often difficult to identify their mechanism of action or cellular target. Here we investigate the potential for integration of chemical-genetic and genetic interaction data to reveal information about the pathways and targets of inhibitory compounds. Taking advantage of the existing complete set of yeast haploid deletion mutants, we generated drug-hypersensitivity (chemical-genetic) profiles for 12 compounds. In addition to a set of compound-specific interactions, the chemical-genetic profiles identified a large group of genes required for multidrug resistance. In particular, yeast mutants lacking a functional vacuolar H(+)-ATPase show multidrug sensitivity, a phenomenon that may be conserved in mammalian cells. By filtering chemical-genetic profiles for the multidrug-resistant genes and then clustering the compound-specific profiles with a compendium of large-scale genetic interaction profiles, we were able to identify target pathways or proteins. This method thus provides a powerful means for inferring mechanism of action.
Comment in
- The biological magic behind the bullets.
Stockwell BR. Stockwell BR. Nat Biotechnol. 2004 Jan;22(1):37-8. doi: 10.1038/nbt0104-37. Nat Biotechnol. 2004. PMID: 14704700 No abstract available.
Similar articles
- Chemical-genetic approaches for exploring the mode of action of natural products.
Lopez A, Parsons AB, Nislow C, Giaever G, Boone C. Lopez A, et al. Prog Drug Res. 2008;66:237, 239-71. doi: 10.1007/978-3-7643-8595-8_5. Prog Drug Res. 2008. PMID: 18416308 Review. - Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast.
Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost RL, Ho CH, Wang J, Ketela T, Brenner C, Brill JA, Fernandez GE, Lorenz TC, Payne GS, Ishihara S, Ohya Y, Andrews B, Hughes TR, Frey BJ, Graham TR, Andersen RJ, Boone C. Parsons AB, et al. Cell. 2006 Aug 11;126(3):611-25. doi: 10.1016/j.cell.2006.06.040. Cell. 2006. PMID: 16901791 - Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug-target pathways.
Han S, Kim D. Han S, et al. PLoS Comput Biol. 2008 Aug 29;4(8):e1000162. doi: 10.1371/journal.pcbi.1000162. PLoS Comput Biol. 2008. PMID: 18769708 Free PMC article. - Studying phospholipid metabolism using yeast systematic and chemical genetics.
Fairn GD, McMaster CR. Fairn GD, et al. Methods. 2005 Jun;36(2):102-8. doi: 10.1016/j.ymeth.2004.11.005. Methods. 2005. PMID: 15893935 - High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions.
Hoepfner D, Helliwell SB, Sadlish H, Schuierer S, Filipuzzi I, Brachat S, Bhullar B, Plikat U, Abraham Y, Altorfer M, Aust T, Baeriswyl L, Cerino R, Chang L, Estoppey D, Eichenberger J, Frederiksen M, Hartmann N, Hohendahl A, Knapp B, Krastel P, Melin N, Nigsch F, Oakeley EJ, Petitjean V, Petersen F, Riedl R, Schmitt EK, Staedtler F, Studer C, Tallarico JA, Wetzel S, Fishman MC, Porter JA, Movva NR. Hoepfner D, et al. Microbiol Res. 2014 Feb-Mar;169(2-3):107-20. doi: 10.1016/j.micres.2013.11.004. Epub 2013 Dec 1. Microbiol Res. 2014. PMID: 24360837
Cited by
- Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress.
Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN, Nislow C, Brown GW. Tkach JM, et al. Nat Cell Biol. 2012 Sep;14(9):966-76. doi: 10.1038/ncb2549. Epub 2012 Jul 29. Nat Cell Biol. 2012. PMID: 22842922 Free PMC article. - Synthetic lethal interactions in yeast reveal functional roles of J protein co-chaperones.
Gillies AT, Taylor R, Gestwicki JE. Gillies AT, et al. Mol Biosyst. 2012 Nov;8(11):2901-8. doi: 10.1039/c2mb25248a. Mol Biosyst. 2012. PMID: 22851130 Free PMC article. - Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy.
Huang Z, Srinivasan S, Zhang J, Chen K, Li Y, Li W, Quiocho FA, Pan X. Huang Z, et al. PLoS Genet. 2012;8(11):e1003083. doi: 10.1371/journal.pgen.1003083. Epub 2012 Nov 29. PLoS Genet. 2012. PMID: 23209439 Free PMC article. - Comparison of profile similarity measures for genetic interaction networks.
Deshpande R, Vandersluis B, Myers CL. Deshpande R, et al. PLoS One. 2013 Jul 10;8(7):e68664. doi: 10.1371/journal.pone.0068664. Print 2013. PLoS One. 2013. PMID: 23874711 Free PMC article. - Physical and genetic-interaction density reveals functional organization and informs significance cutoffs in genome-wide screens.
Dittmar JC, Pierce S, Rothstein R, Reid RJ. Dittmar JC, et al. Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7389-94. doi: 10.1073/pnas.1219582110. Epub 2013 Apr 15. Proc Natl Acad Sci U S A. 2013. PMID: 23589890 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases