Partitioning and plasticity of repressive histone methylation states in mammalian chromatin - PubMed (original) (raw)
. 2003 Dec;12(6):1577-89.
doi: 10.1016/s1097-2765(03)00477-5.
Stefan Kubicek, Karl Mechtler, Roderick J O'Sullivan, Alwin A H A Derijck, Laura Perez-Burgos, Alexander Kohlmaier, Susanne Opravil, Makoto Tachibana, Yoichi Shinkai, Joost H A Martens, Thomas Jenuwein
Affiliations
- PMID: 14690609
- DOI: 10.1016/s1097-2765(03)00477-5
Free article
Partitioning and plasticity of repressive histone methylation states in mammalian chromatin
Antoine H F M Peters et al. Mol Cell. 2003 Dec.
Free article
Abstract
Methylation of position-specific lysine residues in histone N termini is a central modification for regulating epigenetic transitions in chromatin. Each methylatable lysine residue can exist in a mono-, di-, or trimethylated state, thereby extending the indexing potential of this particular modification. Here, we examine all possible methylation states for histone H3 lysine 9 (H3-K9) and lysine 27 (H3-K27) in mammalian chromatin. Using highly specific antibodies together with quantitative mass spectrometry, we demonstrate that pericentric heterochromatin is selectively enriched for H3-K27 monomethylation and H3-K9 trimethylation. This heterochromatic methylation profile is dependent on the Suv39h histone methyltransferases (HMTases) but independent of the euchromatic G9a HMTase. In Suv39h double null cells, pericentric heterochromatin is converted to alternative methylation imprints and accumulates H3-K27 trimethylation and H3-K9 monomethylation. Our data underscore the selective presence of distinct histone lysine methylation states in partitioning chromosomal subdomains but also reveal a surprising plasticity in propagating methylation patterns in eukaryotic chromatin.
Similar articles
- Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains.
Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD. Rice JC, et al. Mol Cell. 2003 Dec;12(6):1591-8. doi: 10.1016/s1097-2765(03)00479-9. Mol Cell. 2003. PMID: 14690610 - G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis.
Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y. Tachibana M, et al. Genes Dev. 2002 Jul 15;16(14):1779-91. doi: 10.1101/gad.989402. Genes Dev. 2002. PMID: 12130538 Free PMC article. - A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin.
Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T. Schotta G, et al. Genes Dev. 2004 Jun 1;18(11):1251-62. doi: 10.1101/gad.300704. Epub 2004 May 14. Genes Dev. 2004. PMID: 15145825 Free PMC article. - The indexing potential of histone lysine methylation.
Schotta G, Lachner M, Peters AH, Jenuwein T. Schotta G, et al. Novartis Found Symp. 2004;259:22-37; discussion 37-47, 163-9. Novartis Found Symp. 2004. PMID: 15171245 Review. - The many faces of histone lysine methylation.
Lachner M, Jenuwein T. Lachner M, et al. Curr Opin Cell Biol. 2002 Jun;14(3):286-98. doi: 10.1016/s0955-0674(02)00335-6. Curr Opin Cell Biol. 2002. PMID: 12067650 Review.
Cited by
- _EZH2_-mediated H3K27me3 is a predictive biomarker and therapeutic target in uveal melanoma.
Hou C, Xiao L, Ren X, Cheng L, Guo B, Zhang M, Yan N. Hou C, et al. Front Genet. 2022 Oct 6;13:1013475. doi: 10.3389/fgene.2022.1013475. eCollection 2022. Front Genet. 2022. PMID: 36276954 Free PMC article. - Chaetocin-mediated SUV39H1 inhibition targets stemness and oncogenic networks of diffuse midline gliomas and synergizes with ONC201.
Xin DE, Liao Y, Rao R, Ogurek S, Sengupta S, Xin M, Bayat AE, Seibel WL, Graham RT, Koschmann C, Lu QR. Xin DE, et al. Neuro Oncol. 2024 Apr 5;26(4):735-748. doi: 10.1093/neuonc/noad222. Neuro Oncol. 2024. PMID: 38011799 Free PMC article. - Physical modeling of the heritability and maintenance of epigenetic modifications.
Sandholtz SH, MacPherson Q, Spakowitz AJ. Sandholtz SH, et al. Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20423-20429. doi: 10.1073/pnas.1920499117. Epub 2020 Aug 10. Proc Natl Acad Sci U S A. 2020. PMID: 32778583 Free PMC article. - A transcription factor-based mechanism for mouse heterochromatin formation.
Bulut-Karslioglu A, Perrera V, Scaranaro M, de la Rosa-Velazquez IA, van de Nobelen S, Shukeir N, Popow J, Gerle B, Opravil S, Pagani M, Meidhof S, Brabletz T, Manke T, Lachner M, Jenuwein T. Bulut-Karslioglu A, et al. Nat Struct Mol Biol. 2012 Oct;19(10):1023-30. doi: 10.1038/nsmb.2382. Epub 2012 Sep 16. Nat Struct Mol Biol. 2012. PMID: 22983563 - Regulation of Peripheral Nerve Myelin Maintenance by Gene Repression through Polycomb Repressive Complex 2.
Ma KH, Hung HA, Srinivasan R, Xie H, Orkin SH, Svaren J. Ma KH, et al. J Neurosci. 2015 Jun 3;35(22):8640-52. doi: 10.1523/JNEUROSCI.2257-14.2015. J Neurosci. 2015. PMID: 26041929 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases