Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review - PubMed (original) (raw)
Review
Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review
Hiroaki Haruguchi et al. J Artif Organs. 2003.
Abstract
Stenosis at the graft-vein junction caused by intimal hyperplasia (IH) is the major cause of failure of vascular access grafts used for hemodialysis. There is a strong relationship between hemodynamic factors and formation of IH. The hemodynamic pattern and the location of IH are different in arterial bypass grafts (ABGs) compared with arteriovenous grafts (AVGs). In an ABG, end-to-side anastomosis of the expanded polytetrafluoroethylene graft and artery produces hemodynamic changes around the junction. IH develops at the arterial floor and the toe and heel of the distal anastomosis. Low shear stress and oscillating shear forces at the arterial floor and the heel plus a high wall sheer stress (WSS) gradient at the toe probably promote IH development. Compliance mismatch between the graft and artery causes turbulence that may contribute to IH formation. The blood flow rate in AVGs is 5-10 times greater than that in ABGs. High flow causes turbulence that injures endothelial cells and eventually results in IH. The peak WSS in AVGs is about 6 N/m(2), much higher than that in ABGs. Excessively high WSS may effect IH formation in AVGs. Several venous cuff or patch anastomotic designs have been used in attempts to regulate hemodynamic factors in grafts. In ABGs, these designs appear to help decrease IH formation. In AVGs, however, they generally have not improved patency rates. In a high-flow system such as an AVG, more drastic changes in anastomotic design may be required.
Similar articles
- Cryoplasty of the venous anastomosis for prevention of intimal hyperplasia in a validated porcine arteriovenous graft model.
Huijbregts HJ, de Borst GJ, Veldhuis WB, Verhagen HJ, Velema E, Pasterkamp G, Moll FL, Blankestijn PJ, Hoefer IE. Huijbregts HJ, et al. Eur J Vasc Endovasc Surg. 2010 May;39(5):620-6. doi: 10.1016/j.ejvs.2009.12.030. Epub 2010 Feb 12. Eur J Vasc Endovasc Surg. 2010. PMID: 20153668 - Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses.
Longest PW, Kleinstreuer C, Deanda A. Longest PW, et al. Ann Biomed Eng. 2005 Dec;33(12):1752-66. doi: 10.1007/s10439-005-7784-2. Ann Biomed Eng. 2005. PMID: 16389524 - Prevention of neointimal hyperplasia associated with modified stretch expanded polytetrafluoroethylene hemodialysis grafts (Gore) in an experimental preclinical study in swine.
Gessaroli M, Bombardi C, Giunti M, Bacci ML. Gessaroli M, et al. J Vasc Surg. 2012 Jan;55(1):192-202. doi: 10.1016/j.jvs.2011.07.076. Epub 2011 Sep 23. J Vasc Surg. 2012. PMID: 21944911 - The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency.
Sarkar S, Salacinski HJ, Hamilton G, Seifalian AM. Sarkar S, et al. Eur J Vasc Endovasc Surg. 2006 Jun;31(6):627-36. doi: 10.1016/j.ejvs.2006.01.006. Epub 2006 Mar 2. Eur J Vasc Endovasc Surg. 2006. PMID: 16513376 Review. - [Intimal hyperplasia within a vascular anastomosis].
Kur'ianov PS, Razuvaev AS, Vavilov VN. Kur'ianov PS, et al. Angiol Sosud Khir. 2008;14(4):146-51. Angiol Sosud Khir. 2008. PMID: 19791568 Review. Russian.
Cited by
- Expression of versican isoform V3 in the absence of ascorbate improves elastogenesis in engineered vascular constructs.
Keire PA, L'Heureux N, Vernon RB, Merrilees MJ, Starcher B, Okon E, Dusserre N, McAllister TN, Wight TN. Keire PA, et al. Tissue Eng Part A. 2010 Feb;16(2):501-12. doi: 10.1089/ten.TEA.2009.0129. Tissue Eng Part A. 2010. PMID: 19712046 Free PMC article. - Evolution of shear stress, protein expression, and vessel area in an animal model of arterial dilatation in hemodialysis grafts.
Misra S, Fu AA, Misra KD, Glockner JF, Mukhopadyay D. Misra S, et al. J Vasc Interv Radiol. 2010 Jan;21(1):108-15. doi: 10.1016/j.jvir.2009.09.024. J Vasc Interv Radiol. 2010. PMID: 20123196 Free PMC article. - Heparin-Modified Collagen Gels for Controlled Release of Pleiotrophin: Potential for Vascular Applications.
Copes F, Chevallier P, Loy C, Pezzoli D, Boccafoschi F, Mantovani D. Copes F, et al. Front Bioeng Biotechnol. 2019 Apr 9;7:74. doi: 10.3389/fbioe.2019.00074. eCollection 2019. Front Bioeng Biotechnol. 2019. PMID: 31024906 Free PMC article. - Contrasting biofunctionalization strategies for the enhanced endothelialization of biodegradable vascular grafts.
Melchiorri AJ, Hibino N, Yi T, Lee YU, Sugiura T, Tara S, Shinoka T, Breuer C, Fisher JP. Melchiorri AJ, et al. Biomacromolecules. 2015 Feb 9;16(2):437-46. doi: 10.1021/bm501853s. Epub 2015 Jan 14. Biomacromolecules. 2015. PMID: 25545620 Free PMC article. - Development and assessment of a biodegradable solvent cast polyester fabric small-diameter vascular graft.
Melchiorri AJ, Hibino N, Brandes ZR, Jonas RA, Fisher JP. Melchiorri AJ, et al. J Biomed Mater Res A. 2014 Jun;102(6):1972-1981. doi: 10.1002/jbm.a.34872. Epub 2013 Jul 30. J Biomed Mater Res A. 2014. PMID: 23852776 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials