White matter lesions in Fabry disease occur in 'prior' selectively hypometabolic and hyperperfused brain regions - PubMed (original) (raw)
White matter lesions in Fabry disease occur in 'prior' selectively hypometabolic and hyperperfused brain regions
David F Moore et al. Brain Res Bull. 2003.
Abstract
Fabry disease is an X-linked disorder associated with early onset stroke. We previously found a significantly elevated cerebral blood flow (CBF) in patients with Fabry disease. We set to determine whether elevated resting CBF in Fabry disease is primarily a cerebrovascular abnormality or is secondary to enhanced neuronal metabolism. The relationship of cerebral metabolism and blood flow to Fabry leukoencephalopathy was also investigated. We measured the global and regional cerebral metabolic rate of glucose using 18-fluoro-deoxyglucose (FDG) and PET in 16 patients with Fabry disease (7 patients with leukoaraiotic lesions and 9 without) and in 7 control subjects. MRI fluid attenuated inversion recovery (FLAIR) studies were also performed in the patient and control groups. All control subjects had normal MRI FLAIR studies with no high-signal deep white matter lesions (WML). Patients were partitioned into FLAIR lesion and non-FLAIR lesion groups. We found no evidence of cerebral glucose hypermetabolism in Fabry disease. On the contrary, significantly decreased regional cerebral glucose metabolism (rCMRGlu) was found particularly in the deep white matter in the Fabry non-lesion group and exacerbated in the lesion group. Lesion-susceptible regions were relatively hyperperfused in non-lesion patients compared to the control group. We conclude that the elevated rCBF and decreased white matter rCMRGlu indicates a dissociation between metabolism and blood flow suggesting chronic deep white matter metabolic insufficiency.
Similar articles
- Progressive Changes in Cerebral Apparent Diffusion Values in Fabry Disease: A 5-Year Follow-up MRI Study.
Baas KPA, Everard AJ, Körver S, van Dussen L, Coolen BF, Strijkers GJ, Hollak CEM, Nederveen AJ. Baas KPA, et al. AJNR Am J Neuroradiol. 2023 Oct;44(10):1157-1164. doi: 10.3174/ajnr.A8001. AJNR Am J Neuroradiol. 2023. PMID: 37770205 Free PMC article. - Positron Emission Tomography and Magnetic Resonance Imaging of the Brain in Fabry Disease: A Nationwide, Long-Time, Prospective Follow-Up.
Korsholm K, Feldt-Rasmussen U, Granqvist H, Højgaard L, Bollinger B, Rasmussen AK, Law I. Korsholm K, et al. PLoS One. 2015 Dec 2;10(12):e0143940. doi: 10.1371/journal.pone.0143940. eCollection 2015. PLoS One. 2015. PMID: 26629990 Free PMC article. - Development and clinical consequences of white matter lesions in Fabry disease: a systematic review.
Körver S, Vergouwe M, Hollak CEM, van Schaik IN, Langeveld M. Körver S, et al. Mol Genet Metab. 2018 Nov;125(3):205-216. doi: 10.1016/j.ymgme.2018.08.014. Epub 2018 Sep 5. Mol Genet Metab. 2018. PMID: 30213639 - [Pathophysiological aspects of brain structural disturbances in patients with Fabry disease: literature review].
Nill M, Müller MJ, Beck M, Stoeter P, Fellgiebel A. Nill M, et al. Fortschr Neurol Psychiatr. 2006 Dec;74(12):687-95. doi: 10.1055/s-2006-932190. Fortschr Neurol Psychiatr. 2006. PMID: 17167727 Review. German. - Quantification of brain tissue alterations in Fabry disease using diffusion-tensor imaging.
Fellgiebel A, Albrecht J, Dellani PR, Schermuly I, Stoeter P, Müller MJ. Fellgiebel A, et al. Acta Paediatr. 2007 Apr;96(455):33-6. doi: 10.1111/j.1651-2227.2007.00203.x. Acta Paediatr. 2007. PMID: 17391437 Review.
Cited by
- Expanding the Neurological Phenotype of Anderson-Fabry Disease: Proof of Concept for an Extrapyramidal Neurodegenerative Pattern and Comparison with Monogenic Vascular Parkinsonism.
Zedde M, Romani I, Scaravilli A, Cocozza S, Trojano L, Ragno M, Rifino N, Bersano A, Gerevini S, Pantoni L, Valzania F, Pascarella R. Zedde M, et al. Cells. 2024 Jun 29;13(13):1131. doi: 10.3390/cells13131131. Cells. 2024. PMID: 38994983 Free PMC article. Review. - Brain perfusion changes in beta-thalassemia.
Manara R, Ponticorvo S, Contieri M, Canna A, Russo AG, Fedele MC, Rocco MC, Borriello A, Valeggia S, Pennisi M, De Angelis M, Roberti D, Cirillo M, di Salle F, Perrotta S, Esposito F, Tartaglione I. Manara R, et al. Orphanet J Rare Dis. 2024 May 21;19(1):212. doi: 10.1186/s13023-024-03194-x. Orphanet J Rare Dis. 2024. PMID: 38773534 Free PMC article. - Dorsal root ganglion magnetic resonance imaging biomarker correlations with pain in Fabry disease.
Schindehütte M, Weiner S, Klug K, Hölzli L, Nauroth-Kreß C, Hessenauer F, Kampf T, Homola GA, Nordbeck P, Wanner C, Sommer C, Üçeyler N, Pham M. Schindehütte M, et al. Brain Commun. 2024 May 1;6(3):fcae155. doi: 10.1093/braincomms/fcae155. eCollection 2024. Brain Commun. 2024. PMID: 38751382 Free PMC article. - Progressive Changes in Cerebral Apparent Diffusion Values in Fabry Disease: A 5-Year Follow-up MRI Study.
Baas KPA, Everard AJ, Körver S, van Dussen L, Coolen BF, Strijkers GJ, Hollak CEM, Nederveen AJ. Baas KPA, et al. AJNR Am J Neuroradiol. 2023 Oct;44(10):1157-1164. doi: 10.3174/ajnr.A8001. AJNR Am J Neuroradiol. 2023. PMID: 37770205 Free PMC article. - Emerging cellular themes in leukodystrophies.
Nowacki JC, Fields AM, Fu MM. Nowacki JC, et al. Front Cell Dev Biol. 2022 Aug 8;10:902261. doi: 10.3389/fcell.2022.902261. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 36003149 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical