Direct stimulation of osteoclastogenesis by MIP-1alpha: evidence obtained from studies using RAW264 cell clone highly responsive to RANKL - PubMed (original) (raw)

Comparative Study

. 2004 Jan;180(1):193-201.

doi: 10.1677/joe.0.1800193.

Affiliations

Comparative Study

Direct stimulation of osteoclastogenesis by MIP-1alpha: evidence obtained from studies using RAW264 cell clone highly responsive to RANKL

Toshiyuki Watanabe et al. J Endocrinol. 2004 Jan.

Abstract

Macrophage inflammatory protein-1alpha (MIP-1alpha) is a member of the CC chemokines. We have previously reported the use of a whole bone marrow culture system to show that MIP-1alpha stimulates the formation of osteoclast-like multinucleated cells. Here we use rat bone marrow cells deprived of stromal cells, and clones obtained from murine macrophage-like cell line RAW264 to show that MIP-1alpha acts directly on cells in osteoclast lineage. We obtained several types of RAW264 cell clones, one of these clones, designated as RAW264 cell D clone (D clone), showed an extremely high response to receptor activator of NFkappaB ligand (RANKL) and tumor necrosis factor-alpha (TNF-alpha), while the other clone, RAW264 cell N clone (N clone), demonstrated no response to RANKL or TNF-alpha. Although both clones expressed receptor activator NFkappaB (RANK) before being stimulated for differentiation, only the D clone expressed cathepsin K when cells were stimulated to differentiate to osteoclasts. MIP-1alpha stimulated the formation of mononuclear preosteoclast-like cells from rat bone marrow cells deprived of stromal cells. MIP-1alpha also stimulated formation of osteoclast-like multinucleated cells from the D clone, when these cells were stimulated with RANKL and TNF-alpha. These findings provide strong evidence to show that MIP-1alpha acts directly on cells in the osteoclast lineage to stimulate osteoclastogenesis. Furthermore, pretreatment of RAW264 cell D clone with MIP-1alpha significantly induced adhesion properties of these cells to primary osteoblasts, suggesting a crucial role for MIP-1alpha in the regulation of the interaction between osteoclast precursors and osteoblasts in osteoclastogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources