A non-adaptationist perspective on evolution of genomic complexity or the continued dethroning of man - PubMed (original) (raw)
Affiliations
- PMID: 14726650
A non-adaptationist perspective on evolution of genomic complexity or the continued dethroning of man
Eugene V Koonin. Cell Cycle. 2004 Mar.
Abstract
A new, non-adaptationist theory of evolution of genomic complexity was recently proposed by Lynch and Conery. This concept holds that increase in complexity seen in eukaryotic genomes is a 'syndrome' caused by increase in genome entropy, which is inevitably triggered by reduction of population size. Here, I discuss the definitions of genomic entropy and complexity and the evidence supporting the entropic theory of genome complexity evolution, including new observations on concordant gain and loss of genes and introns in eukaryotic genomes. I further consider the far-reaching biological and philosophical implications of this theory.
Similar articles
- Uncovering patterns of the evolution of genomic sequence entropy and complexity.
Simões RP, Wolf IR, Correa BA, Valente GT. Simões RP, et al. Mol Genet Genomics. 2021 Mar;296(2):289-298. doi: 10.1007/s00438-020-01729-y. Epub 2020 Oct 21. Mol Genet Genomics. 2021. PMID: 33252723 - Features of coding and noncoding sequences based on 3-tuple distributions.
Fu Q, Qian MP, Chen LB, Zhu YX. Fu Q, et al. Yi Chuan Xue Bao. 2005 Oct;32(10):1018-26. Yi Chuan Xue Bao. 2005. PMID: 16252696 - Preferential loss and gain of introns in 3' portions of genes suggests a reverse-transcription mechanism of intron insertion.
Sverdlov AV, Babenko VN, Rogozin IB, Koonin EV. Sverdlov AV, et al. Gene. 2004 Aug 18;338(1):85-91. doi: 10.1016/j.gene.2004.05.027. Gene. 2004. PMID: 15302409 - Genome size: does bigger mean worse?
Charlesworth B, Barton N. Charlesworth B, et al. Curr Biol. 2004 Mar 23;14(6):R233-5. doi: 10.1016/j.cub.2004.02.054. Curr Biol. 2004. PMID: 15043833 Review. - Analysis of evolution of exon-intron structure of eukaryotic genes.
Rogozin IB, Sverdlov AV, Babenko VN, Koonin EV. Rogozin IB, et al. Brief Bioinform. 2005 Jun;6(2):118-34. doi: 10.1093/bib/6.2.118. Brief Bioinform. 2005. PMID: 15975222 Review.
Cited by
- The new biology: beyond the Modern Synthesis.
Rose MR, Oakley TH. Rose MR, et al. Biol Direct. 2007 Nov 24;2:30. doi: 10.1186/1745-6150-2-30. Biol Direct. 2007. PMID: 18036242 Free PMC article. Review. - Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell.
Makarova KS, Wolf YI, Mekhedov SL, Mirkin BG, Koonin EV. Makarova KS, et al. Nucleic Acids Res. 2005 Aug 16;33(14):4626-38. doi: 10.1093/nar/gki775. Print 2005. Nucleic Acids Res. 2005. PMID: 16106042 Free PMC article. - Reductive genome evolution at both ends of the bacterial population size spectrum.
Batut B, Knibbe C, Marais G, Daubin V. Batut B, et al. Nat Rev Microbiol. 2014 Dec;12(12):841-50. doi: 10.1038/nrmicro3331. Epub 2014 Sep 15. Nat Rev Microbiol. 2014. PMID: 25220308 - Darwinian evolution in the light of genomics.
Koonin EV. Koonin EV. Nucleic Acids Res. 2009 Mar;37(4):1011-34. doi: 10.1093/nar/gkp089. Epub 2009 Feb 12. Nucleic Acids Res. 2009. PMID: 19213802 Free PMC article. - Genome reduction as the dominant mode of evolution.
Wolf YI, Koonin EV. Wolf YI, et al. Bioessays. 2013 Sep;35(9):829-37. doi: 10.1002/bies.201300037. Epub 2013 Jun 25. Bioessays. 2013. PMID: 23801028 Free PMC article.