Short-term adaptation of auditory receptive fields to dynamic stimuli - PubMed (original) (raw)

Short-term adaptation of auditory receptive fields to dynamic stimuli

Mark N Kvale et al. J Neurophysiol. 2004 Feb.

Free article

Abstract

Short-term adaptation and recovery from adaptation have a strong impact on the processing of dynamic stimuli. Adaptive effects on neuronal activity have been studied most commonly for changes in first-order statistics of stimuli such as stepwise increments or decrements in stimulus amplitude. However, changes in higher moment statistics, such as the variance of the amplitude distribution in visual stimuli, also can invoke pronounced adaptation behavior. We demonstrate here that neurons in the inferior colliculus (ICC) of the cat show adaptation to dynamic auditory stimuli that differ in the variance of their modulation depth distribution. In addition, it is shown that neurons show adaptation to other higher moment statistics (e.g., kurtosis) of the modulation envelope. The time course of adaptation is specific for the altered stimulus property and the direction of parameter change. The use of dynamic stimuli allows an estimate of the effects of the adaptation on the temporal response properties of the neurons. We demonstrate that temporal receptive fields of neurons undergo change during the course of adaptation. We show that adaptation to variance in the ICC has many similarities to that in the retina and suggest that adaptation to variance is a general property of sensory systems that allows them to effectively deal with a nonstationary environment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Grants and funding

LinkOut - more resources