Histidine dipeptide levels in ageing and hypertensive rat skeletal and cardiac muscles - PubMed (original) (raw)
Comparative Study
Histidine dipeptide levels in ageing and hypertensive rat skeletal and cardiac muscles
P Johnson et al. Comp Biochem Physiol B. 1992 Dec.
Abstract
1. In rat skeletal muscles (longissimus dorsi and quadriceps femoris), carnosine and anserine levels decreased 35-50% during senescence, and were 35-45% lower in hypertensive rats compared to normotensive levels. 2. In rat left ventricular cardiac muscle, although no free carnosine and anserine were detected, the total level of histidine dipeptides declined 22% during senescence and in hypertensive animals decreased 35% compared to normotensive levels. 3. The significance of these changes in relation to the possible antioxidant roles of histidine dipeptides in muscle is discussed.
Similar articles
- Histidine dipeptide levels in exercised and hypertensive rat muscles.
Hong H, Johnson P. Hong H, et al. Biochem Soc Trans. 1995 Nov;23(4):542S. doi: 10.1042/bst023542s. Biochem Soc Trans. 1995. PMID: 8654727 No abstract available. - Effect of histidine-free and -excess diets on anserine and carnosine contents in rat gastrocnemius muscle.
Tamaki N, Tsunemori F, Wakabayashi M, Hama T. Tamaki N, et al. J Nutr Sci Vitaminol (Tokyo). 1977;23(4):331-40. doi: 10.3177/jnsv.23.331. J Nutr Sci Vitaminol (Tokyo). 1977. PMID: 915562 - A comparative study on defense systems for lipid peroxidation by free radicals in spontaneously hypertensive and normotensive rat myocardium.
Ito H, Torii M, Suzuki T. Ito H, et al. Comp Biochem Physiol B. 1992 Sep;103(1):37-40. doi: 10.1016/0305-0491(92)90410-s. Comp Biochem Physiol B. 1992. PMID: 1451442 - The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance.
Boldyrev AA, Severin SE. Boldyrev AA, et al. Adv Enzyme Regul. 1990;30:175-94. doi: 10.1016/0065-2571(90)90017-v. Adv Enzyme Regul. 1990. PMID: 2206021 Review. - [Biological role of histidine-containing dipeptides].
Boldyrev AA. Boldyrev AA. Biokhimiia. 1986 Dec;51(12):1930-43. Biokhimiia. 1986. PMID: 3542058 Review. Russian.
Cited by
- Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training.
Derave W, Everaert I, Beeckman S, Baguet A. Derave W, et al. Sports Med. 2010 Mar 1;40(3):247-63. doi: 10.2165/11530310-000000000-00000. Sports Med. 2010. PMID: 20199122 Review. - Physiological Roles of Carnosine in Myocardial Function and Health.
Creighton JV, de Souza Gonçalves L, Artioli GG, Tan D, Elliott-Sale KJ, Turner MD, Doig CL, Sale C. Creighton JV, et al. Adv Nutr. 2022 Oct 2;13(5):1914-1929. doi: 10.1093/advances/nmac059. Adv Nutr. 2022. PMID: 35689661 Free PMC article. Review. - Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins.
Tabibzadeh S. Tabibzadeh S. Aging Dis. 2022 Dec 1;13(6):1664-1714. doi: 10.14336/AD.2022.0414. eCollection 2022 Dec 1. Aging Dis. 2022. PMID: 36465174 Free PMC article. - Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health.
Wu G. Wu G. Amino Acids. 2020 Mar;52(3):329-360. doi: 10.1007/s00726-020-02823-6. Epub 2020 Feb 18. Amino Acids. 2020. PMID: 32072297 Free PMC article. Review. - Protocol to assess the efficacy of carnosine supplementation in mitigating the adverse cardiovascular responses to particulate matter (PM) exposure: the Nucleophilic Defense Against PM Toxicity (NEAT) trial.
O'Toole TE, Amraotkar AA, DeFilippis AP, Rai SN, Keith RJ, Baba SP, Lorkiewicz P, Crandell CE, Pariser GL, Wingard CJ, Pope Iii CA, Bhatnagar A. O'Toole TE, et al. BMJ Open. 2020 Dec 28;10(12):e039118. doi: 10.1136/bmjopen-2020-039118. BMJ Open. 2020. PMID: 33372072 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Medical