Assessment of resolution in biological electron crystallography - PubMed (original) (raw)
Assessment of resolution in biological electron crystallography
R M Glaeser et al. Ultramicroscopy. 1992 Nov.
Abstract
The resolution of images or density maps produced by electron microscopy and electron crystallography can be objectively defined in terms of the spatial frequency of the highest resolution diffraction spot, or Fourier coefficient, included in the data processing. In practice, this objective definition of resolution is expected to be too optimistic if the amplitudes of the highest resolution structure factors are too weak, if the population of high resolution reflections is too sparse, or if the signal-to-noise ratio of the high resolution data is too low. Calculated examples are presented here which illustrate how the apparent resolution in images of a membrane protein, bacteriorhodopsin, can be reduced from a nominal value of 3.5 A by weak amplitudes, sparse data or high noise levels. These calculations provide concrete examples which can serve as a guide when estimating whether the objective definition of image resolution is likely to correspond to a practical, structurally useful estimate of image resolution.
Similar articles
- Direct structure determination by electron crystallography: protein data sets.
Dorset DL. Dorset DL. Micron. 1995;26(6):511-20. doi: 10.1016/0968-4328(95)00003-8. Micron. 1995. PMID: 8763203 - Can the low-resolution structures of photointermediates of bacteriorhodopsin explain their crystal structures?
Kamikubo H, Kataoka M. Kamikubo H, et al. Biophys J. 2005 Mar;88(3):1925-31. doi: 10.1529/biophysj.104.045831. Epub 2004 Dec 13. Biophys J. 2005. PMID: 15596495 Free PMC article. - Introduction to electron crystallography.
Kühlbrandt W. Kühlbrandt W. Methods Mol Biol. 2013;955:1-16. doi: 10.1007/978-1-62703-176-9_1. Methods Mol Biol. 2013. PMID: 23132052 Review. - Electron crystallography for structural and functional studies of membrane proteins.
Fujiyoshi Y. Fujiyoshi Y. J Electron Microsc (Tokyo). 2011;60 Suppl 1:S149-59. doi: 10.1093/jmicro/dfr033. J Electron Microsc (Tokyo). 2011. PMID: 21844586 Review.
Cited by
- An adaptation of the Wiener filter suitable for analyzing images of isolated single particles.
Sindelar CV, Grigorieff N. Sindelar CV, et al. J Struct Biol. 2011 Oct;176(1):60-74. doi: 10.1016/j.jsb.2011.06.010. Epub 2011 Jul 2. J Struct Biol. 2011. PMID: 21757012 Free PMC article. - Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle.
Rosenberg MF, Velarde G, Ford RC, Martin C, Berridge G, Kerr ID, Callaghan R, Schmidlin A, Wooding C, Linton KJ, Higgins CF. Rosenberg MF, et al. EMBO J. 2001 Oct 15;20(20):5615-25. doi: 10.1093/emboj/20.20.5615. EMBO J. 2001. PMID: 11598005 Free PMC article. - CTF determination and correction for low dose tomographic tilt series.
Xiong Q, Morphew MK, Schwartz CL, Hoenger AH, Mastronarde DN. Xiong Q, et al. J Struct Biol. 2009 Dec;168(3):378-87. doi: 10.1016/j.jsb.2009.08.016. Epub 2009 Sep 2. J Struct Biol. 2009. PMID: 19732834 Free PMC article. - Structure of DNA-dependent protein kinase: implications for its regulation by DNA.
Leuther KK, Hammarsten O, Kornberg RD, Chu G. Leuther KK, et al. EMBO J. 1999 Mar 1;18(5):1114-23. doi: 10.1093/emboj/18.5.1114. EMBO J. 1999. PMID: 10064579 Free PMC article. - Solution x-ray scattering-based estimation of electron cryomicroscopy imaging parameters for reconstruction of virus particles.
Thuman-Commike PA, Tsuruta H, Greene B, Prevelige PE Jr, King J, Chiu W. Thuman-Commike PA, et al. Biophys J. 1999 Apr;76(4):2249-61. doi: 10.1016/S0006-3495(99)77381-9. Biophys J. 1999. PMID: 10096920 Free PMC article.