Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the tuberous sclerosis complex proteins in brain lesions - PubMed (original) (raw)
Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the tuberous sclerosis complex proteins in brain lesions
Sangyeul Han et al. Cancer Res. 2004.
Abstract
Tuberous sclerosis complex is caused by mutations in tumor suppressor genes TSC1 or TSC2 and is characterized by the presence of hamartomas in many organs. Although tuberous sclerosis complex is a tumor suppressor gene syndrome with classic "second hits" detectable in renal tumors, conventional genetic analysis has not revealed somatic inactivation of the second allele in the majority of human brain lesions. We demonstrate a novel mechanism of post-translational inactivation of the TSC2 protein, tuberin, by physiologically inappropriate phosphorylation, which is specific to tuberous sclerosis complex-associated brain lesions. Additional analysis shows that tissue specificity is due to abnormal activation of the Akt and mitogen-activated protein kinase pathways in brain but not in renal tumors. These results have widespread implications for understanding the tissue specificity of tumor suppressor gene phenotypes.
Similar articles
- Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase.
Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Roux PP, et al. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13489-94. doi: 10.1073/pnas.0405659101. Epub 2004 Sep 1. Proc Natl Acad Sci U S A. 2004. PMID: 15342917 Free PMC article. - Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin.
Tee AR, Anjum R, Blenis J. Tee AR, et al. J Biol Chem. 2003 Sep 26;278(39):37288-96. doi: 10.1074/jbc.M303257200. Epub 2003 Jul 16. J Biol Chem. 2003. PMID: 12867426 - Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation.
Chan JA, Zhang H, Roberts PS, Jozwiak S, Wieslawa G, Lewin-Kowalik J, Kotulska K, Kwiatkowski DJ. Chan JA, et al. J Neuropathol Exp Neurol. 2004 Dec;63(12):1236-42. doi: 10.1093/jnen/63.12.1236. J Neuropathol Exp Neurol. 2004. PMID: 15624760 - Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis.
Kwiatkowski DJ. Kwiatkowski DJ. Cancer Biol Ther. 2003 Sep-Oct;2(5):471-6. doi: 10.4161/cbt.2.5.446. Cancer Biol Ther. 2003. PMID: 14614311 Review. - Regulation of tuberous sclerosis complex (TSC) function by 14-3-3 proteins.
Nellist M, Goedbloed MA, Halley DJ. Nellist M, et al. Biochem Soc Trans. 2003 Jun;31(Pt 3):587-91. doi: 10.1042/bst0310587. Biochem Soc Trans. 2003. PMID: 12773161 Review.
Cited by
- Differential Pi3K-pathway activation in cortical tubers and focal cortical dysplasias with balloon cells.
Schick V, Majores M, Engels G, Hartmann W, Elger CE, Schramm J, Schoch S, Becker AJ. Schick V, et al. Brain Pathol. 2007 Apr;17(2):165-73. doi: 10.1111/j.1750-3639.2007.00059.x. Brain Pathol. 2007. PMID: 17388947 Free PMC article. - A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival.
Meikle L, Talos DM, Onda H, Pollizzi K, Rotenberg A, Sahin M, Jensen FE, Kwiatkowski DJ. Meikle L, et al. J Neurosci. 2007 May 23;27(21):5546-58. doi: 10.1523/JNEUROSCI.5540-06.2007. J Neurosci. 2007. PMID: 17522300 Free PMC article. - Akt-dependent and -independent mechanisms of mTOR regulation in cancer.
Memmott RM, Dennis PA. Memmott RM, et al. Cell Signal. 2009 May;21(5):656-64. doi: 10.1016/j.cellsig.2009.01.004. Epub 2009 Jan 7. Cell Signal. 2009. PMID: 19166931 Free PMC article. Review. - Somatic mutation, genomic variation, and neurological disease.
Poduri A, Evrony GD, Cai X, Walsh CA. Poduri A, et al. Science. 2013 Jul 5;341(6141):1237758. doi: 10.1126/science.1237758. Science. 2013. PMID: 23828942 Free PMC article. Review. - GPR43 Suppresses Intestinal Tumor Growth by Modification of the Mammalian Target of Rapamycin Complex 1 Activity in ApcMin/+ Mice.
Kong L, Hoshi N, Sui Y, Yamada Y, Yoshida R, Ooi M, Tian Z, Kimura I, Kodama Y. Kong L, et al. Med Princ Pract. 2022;31(1):39-46. doi: 10.1159/000518621. Epub 2021 Oct 1. Med Princ Pract. 2022. PMID: 34818236 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous