Distribution of glutamylated alpha and beta-tubulin in mouse tissues using a specific monoclonal antibody, GT335 - PubMed (original) (raw)

Affiliations

Distribution of glutamylated alpha and beta-tubulin in mouse tissues using a specific monoclonal antibody, GT335

A Wolff et al. Eur J Cell Biol. 1992 Dec.

Abstract

A monoclonal antibody (GT335) directed against polyglutamylated tubulin was obtained by immunization with a synthetic peptide which mimics the structure of the polyglutamylated site of alpha-tubulin. This peptide corresponds to the C-terminal sequence Glu441-Gly448 and was chemically modified by the addition of two glutamyl units at Glu445. The specificity of GT335 was assayed by direct and competitive enzyme-linked immunosorbent assay (ELISA) against tubulin and several synthetic peptides differing either by the structure of the added polyglutamyl chain or by their amino acid sequence. Further characterization was carried out by immunoblotting detection after one- or two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The epitope appears to be formed by at least two constituents: a basic motif of monoglutamylation which is retained in the polyglutamylated forms independent of their degree of glutamylation, and some elements of the polypeptide chain close to the site of glutamylation. Given the specificity of GT335 and the delineation of its epitope, our results indicate that, in addition to alpha and beta' (class III)-tubulin, other beta-tubulin isotypes are also glutamylated. This antibody has been used to analyze the cell and tissue distributions of glutamylated tubulin. In mouse brain extracts, GT335 reacts strongly with alpha-tubulin and, to a lesser extent, with beta' (class III) and beta-tubulin. The same reactivity is also observed with cultured neurons whereas astroglial cells exhibit only low levels of glutamylated tubulin. In non-nervous mouse tissues such as spleen, lung or testis, glutamylation was shown to involve only beta-tubulin, but at far lower levels than in brain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources