DNA looping - PubMed (original) (raw)
Review
DNA looping
R Schleif. Annu Rev Biochem. 1992.
Abstract
DNA looping is widely used in nature. It is well documented in the regulation of prokaryotic and eukaryotic gene expression, DNA replication, and site-specific DNA recombination. Undoubtedly looping also functions in other protein-DNA transactions such as repair and chromosome segregation. While the underlying physical chemistry of DNA looping is common to all systems, the precise biochemical details of looping and the utilization of looping by different systems varies widely. Looping appears to have been chosen by nature in such a wide variety of contexts because it solves problems both of binding and of geometry. The cooperativity inherent in binding a protein to multiple sites on DNA facilitates high occupancy of DNA sites by low concentrations of proteins. DNA looping permits a sizeable number of DNA-binding proteins to interact with one of their number, for example RNA polymerase. Finally, DNA looping may simplify evolution by not requiring a precise spacing between a protein's binding site and a second site on the DNA.
Similar articles
- DNA looping.
Matthews KS. Matthews KS. Microbiol Rev. 1992 Mar;56(1):123-36. doi: 10.1128/mr.56.1.123-136.1992. Microbiol Rev. 1992. PMID: 1579106 Free PMC article. Review. - DNA looping: the consequences and its control.
Saiz L, Vilar JM. Saiz L, et al. Curr Opin Struct Biol. 2006 Jun;16(3):344-50. doi: 10.1016/j.sbi.2006.05.008. Epub 2006 May 22. Curr Opin Struct Biol. 2006. PMID: 16714105 Review. - Lymphoid enhancer binding factor 1 regulates transcription through gene looping.
Yun K, So JS, Jash A, Im SH. Yun K, et al. J Immunol. 2009 Oct 15;183(8):5129-37. doi: 10.4049/jimmunol.0802744. Epub 2009 Sep 25. J Immunol. 2009. PMID: 19783677 - Analysis of DNA looping interactions by type II restriction enzymes that require two copies of their recognition sites.
Milsom SE, Halford SE, Embleton ML, Szczelkun MD. Milsom SE, et al. J Mol Biol. 2001 Aug 17;311(3):515-27. doi: 10.1006/jmbi.2001.4893. J Mol Biol. 2001. PMID: 11493005 - Multiprotein DNA looping.
Vilar JM, Saiz L. Vilar JM, et al. Phys Rev Lett. 2006 Jun 16;96(23):238103. doi: 10.1103/PhysRevLett.96.238103. Epub 2006 Jun 15. Phys Rev Lett. 2006. PMID: 16803410
Cited by
- Incorporating Sequence-Dependent DNA Shape and Dynamics into Transcriptome Data Analysis.
Kalsan M, Jabeen A, Ahmad S. Kalsan M, et al. Methods Mol Biol. 2024;2812:317-343. doi: 10.1007/978-1-0716-3886-6_18. Methods Mol Biol. 2024. PMID: 39068371 - Quantitative Determination of DNA Bridging Efficiency of Chromatin Proteins.
van der Valk RA, van Erp B, Qin L, Moolenaar GF, Dame RT. van der Valk RA, et al. Methods Mol Biol. 2024;2819:443-454. doi: 10.1007/978-1-0716-3930-6_20. Methods Mol Biol. 2024. PMID: 39028518 - A graph neural network-based interpretable framework reveals a novel DNA fragility-associated chromatin structural unit.
Sun Y, Xu X, Lin L, Xu K, Zheng Y, Ren C, Tao H, Wang X, Zhao H, Tu W, Bai X, Wang J, Huang Q, Li Y, Chen H, Li H, Bo X. Sun Y, et al. Genome Biol. 2023 Apr 24;24(1):90. doi: 10.1186/s13059-023-02916-x. Genome Biol. 2023. PMID: 37095580 Free PMC article. - Genome-Wide Mapping of the Escherichia coli PhoB Regulon Reveals Many Transcriptionally Inert, Intragenic Binding Sites.
Fitzgerald DM, Stringer AM, Smith C, Lapierre P, Wade JT. Fitzgerald DM, et al. mBio. 2023 Jun 27;14(3):e0253522. doi: 10.1128/mbio.02535-22. Epub 2023 Apr 17. mBio. 2023. PMID: 37067422 Free PMC article. - Staphylococcus aureus FadB is a dehydrogenase that mediates cholate resistance and survival under human colonic conditions.
Alsultan A, Walton G, Andrews SC, Clarke SR. Alsultan A, et al. Microbiology (Reading). 2023 Mar;169(3):001314. doi: 10.1099/mic.0.001314. Microbiology (Reading). 2023. PMID: 36947574 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources