Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset - PubMed (original) (raw)
. 2004 Mar 9;101(10):3498-503.
doi: 10.1073/pnas.0308679101. Epub 2004 Mar 1.
Judith Lorimer, Julie Porter, Fidela Gomez, Carol Moskowitz, Edith Shackell, Karen Marder, Graciela Penchaszadeh, Simone A Roberts, Javier Gayán, Denise Brocklebank, Stacey S Cherny, Lon R Cardon, Jacqueline Gray, Stephen R Dlouhy, Sandra Wiktorski, Marion E Hodes, P Michael Conneally, Jack B Penney, James Gusella, Jang-Ho Cha, Michael Irizarry, Diana Rosas, Steven Hersch, Zane Hollingsworth, Marcy MacDonald, Anne B Young, J Michael Andresen, David E Housman, Margot Mieja De Young, Ernesto Bonilla, Theresa Stillings, Americo Negrette, S Robert Snodgrass, Maria Dolores Martinez-Jaurrieta, Maria A Ramos-Arroyo, Jacqueline Bickham, Juan Sanchez Ramos, Frederick Marshall, Ira Shoulson, Gustavo J Rey, Andrew Feigin, Norman Arnheim, Amarilis Acevedo-Cruz, Leticia Acosta, Jose Alvir, Kenneth Fischbeck, Leslie M Thompson, Angela Young, Leon Dure, Christopher J O'Brien, Jane Paulsen, Adam Brickman, Denise Krch, Shelley Peery, Penelope Hogarth, Donald S Higgins Jr, Bernhard Landwehrmeyer; U.S.-Venezuela Collaborative Research Project
Affiliations
- PMID: 14993615
- PMCID: PMC373491
- DOI: 10.1073/pnas.0308679101
Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset
Nancy S Wexler et al. Proc Natl Acad Sci U S A. 2004.
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a triplet (CAG) expansion mutation. The length of the triplet repeat is the most important factor in determining age of onset of HD, although substantial variability remains after controlling for repeat length. The Venezuelan HD kindreds encompass 18,149 individuals spanning 10 generations, 15,409 of whom are living. Of the 4,384 immortalized lymphocyte lines collected, 3,989 DNAs were genotyped for their HD alleles, representing a subset of the population at greatest genetic risk. There are 938 heterozygotes, 80 people with variably penetrant alleles, and 18 homozygotes. Analysis of the 83 kindreds that comprise the Venezuelan HD kindreds demonstrates that residual variability in age of onset has both genetic and environmental components. We created a residual age of onset phenotype from a regression analysis of the log of age of onset on repeat length. Familial correlations (correlation +/- SE) were estimated for sibling (0.40 +/- 0.09), parent-offspring (0.10 +/- 0.11), avuncular (0.07 +/- 0.11), and cousin (0.15 +/- 0.10) pairs, suggesting a familial origin for the residual variance in onset. By using a variance-components approach with all available familial relationships, the additive genetic heritability of this residual age of onset trait is 38%. A model, including shared sibling environmental effects, estimated the components of additive genetic (0.37), shared environment (0.22), and nonshared environment (0.41) variances, confirming that approximately 40% of the variance remaining in onset age is attributable to genes other than the HD gene and 60% is environmental.
Figures
Fig. 1.
Histogram of the longer allele repeat length in the Venezuelan HD kindreds. Repeat length ranges are defined as normal (14–34 CAGs), incompletely penetrant (35–39 CAGs), and fully penetrant (≥40 CAGs).
Fig. 2.
Box plot of age of onset and repeat length of the longer allele. The curvilinear relationship between the two variables can be observed. It also is important to note the large variability of age of onset values, even within each repeat length.
Similar articles
- The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease.
Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, et al. Andrew SE, et al. Nat Genet. 1993 Aug;4(4):398-403. doi: 10.1038/ng0893-398. Nat Genet. 1993. PMID: 8401589 - Huntington's Disease-like 2 (HDL2) in North America and Japan.
Margolis RL, Holmes SE, Rosenblatt A, Gourley L, O'Hearn E, Ross CA, Seltzer WK, Walker RH, Ashizawa T, Rasmussen A, Hayden M, Almqvist EW, Harris J, Fahn S, MacDonald ME, Mysore J, Shimohata T, Tsuji S, Potter N, Nakaso K, Adachi Y, Nakashima K, Bird T, Krause A, Greenstein P. Margolis RL, et al. Ann Neurol. 2004 Nov;56(5):670-4. doi: 10.1002/ana.20248. Ann Neurol. 2004. PMID: 15468075 - A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length.
Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR; International Huntington's Disease Collaborative Group. Langbehn DR, et al. Clin Genet. 2004 Apr;65(4):267-77. doi: 10.1111/j.1399-0004.2004.00241.x. Clin Genet. 2004. PMID: 15025718 - Advances in Huntington's disease diagnostics: development of a standard reference material.
Levin BC, Richie KL, Jakupciak JP. Levin BC, et al. Expert Rev Mol Diagn. 2006 Jul;6(4):587-96. doi: 10.1586/14737159.6.4.587. Expert Rev Mol Diagn. 2006. PMID: 16824032 Review. - Huntington's disease like-2: review and update.
Margolis RL, Rudnicki DD, Holmes SE. Margolis RL, et al. Acta Neurol Taiwan. 2005 Mar;14(1):1-8. Acta Neurol Taiwan. 2005. PMID: 15835282 Review.
Cited by
- Chromosome substitution strain assessment of a Huntington's disease modifier locus.
Ramos EM, Kovalenko M, Guide JR, St Claire J, Gillis T, Mysore JS, Sequeiros J, Wheeler VC, Alonso I, MacDonald ME. Ramos EM, et al. Mamm Genome. 2015 Apr;26(3-4):119-30. doi: 10.1007/s00335-014-9552-9. Epub 2015 Feb 3. Mamm Genome. 2015. PMID: 25645993 Free PMC article. - Candidate glutamatergic and dopaminergic pathway gene variants do not influence Huntington's disease motor onset.
Ramos EM, Latourelle JC, Gillis T, Mysore JS, Squitieri F, Di Pardo A, Di Donato S, Gellera C, Hayden MR, Morrison PJ, Nance M, Ross CA, Margolis RL, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Abramson RK, Marder K, Gusella JF, Lee JM, Alonso I, Sequeiros J, Myers RH, Macdonald ME. Ramos EM, et al. Neurogenetics. 2013 Nov;14(3-4):173-9. doi: 10.1007/s10048-013-0364-y. Epub 2013 May 4. Neurogenetics. 2013. PMID: 23644918 Free PMC article. - Structure of a single-chain Fv bound to the 17 N-terminal residues of huntingtin provides insights into pathogenic amyloid formation and suppression.
De Genst E, Chirgadze DY, Klein FA, Butler DC, Matak-Vinković D, Trottier Y, Huston JS, Messer A, Dobson CM. De Genst E, et al. J Mol Biol. 2015 Jun 19;427(12):2166-78. doi: 10.1016/j.jmb.2015.03.021. Epub 2015 Apr 8. J Mol Biol. 2015. PMID: 25861763 Free PMC article. - Association between Genetically Proxied Inhibition of HMG-CoA Reductase and Age at Onset of Huntington's Disease.
Zhu Y, Li M, Wang H, Yang F, Wang J, Huang X. Zhu Y, et al. Brain Sci. 2022 Nov 15;12(11):1551. doi: 10.3390/brainsci12111551. Brain Sci. 2022. PMID: 36421875 Free PMC article. - Early onset Huntington disease: a neuronal degeneration syndrome.
Seneca S, Fagnart D, Keymolen K, Lissens W, Hasaerts D, Debulpaep S, Desprechins B, Liebaers I, De Meirleir L. Seneca S, et al. Eur J Pediatr. 2004 Dec;163(12):717-21. doi: 10.1007/s00431-004-1537-3. Eur J Pediatr. 2004. PMID: 15338298
References
- Bates, G., Harper, P. & Jones, L. (2002) Huntington's Disease (Oxford Univ. Press, Oxford), 3rd Ed.
- Gusella, J. F., Wexler, N. S., Conneally, P. M., Naylor, S. L., Anderson, M. A., Tanzi, R. E., Watkins, P. C., Ottina, K., Wallace, M. R., Sakaguchi, A. Y., et al. (1983) Nature 306, 234-238. - PubMed
- The Huntington's Disease Collaborative Research Group (1993) Cell 72, 971-983. - PubMed
- Feigin, A. & Zgaljardic, D. (2002) Curr. Opin. Neurol. 15, 483-489. - PubMed
- Ross, C. A. (2002) Neuron 35, 819-822. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials