Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes - PubMed (original) (raw)
Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes
J M Sanger et al. Infect Immun. 1992 Sep.
Abstract
Listeria monocytogenes is able to escape from the phagolysosome and grow within the host cell cytoplasm. By 3 h after initiation of infection, actin filaments begin to concentrate at one end of the bacterium. Polarization of F-actin is associated with intracellular bacterial movement, long projections of actin filaments forming directly behind the moving bacteria. New actin monomers are added to the region of the projection in proximity to the bacterium. The rate of new actin filament growth correlates closely with the speed of bacterial migration. This actin structure is anchored within the cytoplasm, serving as a fixed platform for directional expansion of the actin filament network. The actin projection progressively lengthens as the bacterium migrates. Cytochalasin blocks both elongation of the projection and bacterial movement but does not result in complete depolymerization of the bacterially induced actin structure, residual actin and alpha-actinin persisting in proximity to one end of the bacterium. Bacteria initially migrate within the cortical cytoplasm but later move to the peripheral membrane, where they form filopodiumlike structures which pivot and undulate in the extracellular medium. In the filopodia, bacteria are occasionally seen to abruptly change direction, turn 180 degrees, and move back into the medullary region of the host cell. All filopodium movement ceases once the bacterium containing the F-actin projection returns to the cortical cytoplasm. These results indicate that host cell actin polymerization is necessary for intracellular migration of listeriae and suggest that directional actin assembly may in fact generate the propulsive force for bacterial and filopodial movement.
Similar articles
- Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly.
Dabiri GA, Sanger JM, Portnoy DA, Southwick FS. Dabiri GA, et al. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6068-72. doi: 10.1073/pnas.87.16.6068. Proc Natl Acad Sci U S A. 1990. PMID: 2117270 Free PMC article. - Listeria monocytogenes intracellular migration: inhibition by profilin, vitamin D-binding protein and DNase I.
Sanger JM, Mittal B, Southwick FS, Sanger JW. Sanger JM, et al. Cell Motil Cytoskeleton. 1995;30(1):38-49. doi: 10.1002/cm.970300106. Cell Motil Cytoskeleton. 1995. PMID: 7728867 - Dynamics of actin and alpha-actinin in the tails of Listeria monocytogenes in infected PtK2 cells.
Nanavati D, Ashton FT, Sanger JM, Sanger JW. Nanavati D, et al. Cell Motil Cytoskeleton. 1994;28(4):346-58. doi: 10.1002/cm.970280408. Cell Motil Cytoskeleton. 1994. PMID: 7954861 - The actin-based motility of the facultative intracellular pathogen Listeria monocytogenes.
Cossart P, Kocks C. Cossart P, et al. Mol Microbiol. 1994 Aug;13(3):395-402. doi: 10.1111/j.1365-2958.1994.tb00434.x. Mol Microbiol. 1994. PMID: 7997157 Review. - Host-pathogen interactions during entry and actin-based movement of Listeria monocytogenes.
Ireton K, Cossart P. Ireton K, et al. Annu Rev Genet. 1997;31:113-38. doi: 10.1146/annurev.genet.31.1.113. Annu Rev Genet. 1997. PMID: 9442892 Review.
Cited by
- Effects of intermediate filaments on actin-based motility of Listeria monocytogenes.
Giardini PA, Theriot JA. Giardini PA, et al. Biophys J. 2001 Dec;81(6):3193-203. doi: 10.1016/S0006-3495(01)75955-3. Biophys J. 2001. PMID: 11720985 Free PMC article. - Cell motility driven by actin polymerization.
Mogilner A, Oster G. Mogilner A, et al. Biophys J. 1996 Dec;71(6):3030-45. doi: 10.1016/S0006-3495(96)79496-1. Biophys J. 1996. PMID: 8968574 Free PMC article. - Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells.
Brundage RA, Smith GA, Camilli A, Theriot JA, Portnoy DA. Brundage RA, et al. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11890-4. doi: 10.1073/pnas.90.24.11890. Proc Natl Acad Sci U S A. 1993. PMID: 8265643 Free PMC article. - Polarity in action: asymmetric protein localization in bacteria.
Lybarger SR, Maddock JR. Lybarger SR, et al. J Bacteriol. 2001 Jun;183(11):3261-7. doi: 10.1128/JB.183.11.3261-3267.2001. J Bacteriol. 2001. PMID: 11344132 Free PMC article. Review. No abstract available. - Molecular dissection of zyxin function reveals its involvement in cell motility.
Drees BE, Andrews KM, Beckerle MC. Drees BE, et al. J Cell Biol. 1999 Dec 27;147(7):1549-60. doi: 10.1083/jcb.147.7.1549. J Cell Biol. 1999. PMID: 10613911 Free PMC article.
References
- J Cell Biol. 1979 Jun;81(3):608-23 - PubMed
- J Cell Biol. 1982 Jun;93(3):820-7 - PubMed
- Infect Immun. 1990 Apr;58(4):1048-58 - PubMed
- J Cell Biol. 1990 Dec;111(6 Pt 2):2979-88 - PubMed
- J Cell Biol. 1989 Oct;109(4 Pt 1):1597-608 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources