Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression - PubMed (original) (raw)
. 2004 Jun 11;279(24):25050-7.
doi: 10.1074/jbc.M401028200. Epub 2004 Mar 17.
Affiliations
- PMID: 15028738
- DOI: 10.1074/jbc.M401028200
Free article
Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression
Ayanna Augustus et al. J Biol Chem. 2004.
Free article
Abstract
Fatty acids are the primary energy source for the heart. The heart acquires fatty acids associated with albumin or derived from lipoprotein lipase (LpL)-mediated hydrolysis of lipoprotein triglyceride (TG). We generated heart-specific LpL knock-out mice (hLpL0) to determine whether cardiac LpL modulates the actions of peroxisome proliferator-activated receptors and affects whole body lipid metabolism. Male hLpL0 mice had significantly elevated plasma TG levels and decreased clearance of postprandial lipids despite normal postheparin plasma LpL activity. Very large density lipoprotein-TG uptake was decreased by 72% in hLpL0 hearts. However, heart uptake of albumin-bound free fatty acids was not altered. Northern blot analysis revealed a decrease in the expression of peroxisome proliferator-activated receptor alpha-response genes involved in fatty acid beta-oxidation. Surprisingly, the expression of glucose transporters 1 and 4 and insulin receptor substrate 2 was increased and that of pyruvate dehydrogenase kinase 4 and insulin receptor substrate 1 was reduced. Basal glucose uptake was increased markedly in hLpL0 hearts. Thus, the loss of LpL in the heart leads to defective plasma metabolism of TG. Moreover, fatty acids derived from lipoprotein TG and not just albumin-associated fatty acids are important for cardiac lipid metabolism and gene regulation.
Similar articles
- Loss of lipoprotein lipase-derived fatty acids leads to increased cardiac glucose metabolism and heart dysfunction.
Augustus AS, Buchanan J, Park TS, Hirata K, Noh HL, Sun J, Homma S, D'armiento J, Abel ED, Goldberg IJ. Augustus AS, et al. J Biol Chem. 2006 Mar 31;281(13):8716-23. doi: 10.1074/jbc.M509890200. Epub 2006 Jan 12. J Biol Chem. 2006. PMID: 16410253 - Chylomicron- and VLDL-derived lipids enter the heart through different pathways: in vivo evidence for receptor- and non-receptor-mediated fatty acid uptake.
Bharadwaj KG, Hiyama Y, Hu Y, Huggins LA, Ramakrishnan R, Abumrad NA, Shulman GI, Blaner WS, Goldberg IJ. Bharadwaj KG, et al. J Biol Chem. 2010 Dec 3;285(49):37976-86. doi: 10.1074/jbc.M110.174458. Epub 2010 Sep 18. J Biol Chem. 2010. PMID: 20852327 Free PMC article. - Cardiac metabolic compensation to hypertension requires lipoprotein lipase.
Yamashita H, Bharadwaj KG, Ikeda S, Park TS, Goldberg IJ. Yamashita H, et al. Am J Physiol Endocrinol Metab. 2008 Sep;295(3):E705-13. doi: 10.1152/ajpendo.90338.2008. Epub 2008 Jul 22. Am J Physiol Endocrinol Metab. 2008. PMID: 18647880 Free PMC article. - Lipoproteini lipase-derived fatty acids: physiology and dysfunction.
Lee J, Goldberg IJ. Lee J, et al. Curr Hypertens Rep. 2007 Dec;9(6):462-6. doi: 10.1007/s11906-007-0085-4. Curr Hypertens Rep. 2007. PMID: 18367009 Review. - Cardiac metabolism and mechanics are altered by genetic loss of lipoprotein triglyceride lipolysis.
Noh HL, Yamashita H, Goldberg IJ. Noh HL, et al. Cardiovasc Drugs Ther. 2006 Dec;20(6):441-4. doi: 10.1007/s10557-006-0633-1. Cardiovasc Drugs Ther. 2006. PMID: 17139480 Review.
Cited by
- Endothelial cell CD36 optimizes tissue fatty acid uptake.
Son NH, Basu D, Samovski D, Pietka TA, Peche VS, Willecke F, Fang X, Yu SQ, Scerbo D, Chang HR, Sun F, Bagdasarov S, Drosatos K, Yeh ST, Mullick AE, Shoghi KI, Gumaste N, Kim K, Huggins LA, Lhakhang T, Abumrad NA, Goldberg IJ. Son NH, et al. J Clin Invest. 2018 Oct 1;128(10):4329-4342. doi: 10.1172/JCI99315. Epub 2018 Jul 26. J Clin Invest. 2018. PMID: 30047927 Free PMC article. - Lipoprotein lipase activity is required for cardiac lipid droplet production.
Trent CM, Yu S, Hu Y, Skoller N, Huggins LA, Homma S, Goldberg IJ. Trent CM, et al. J Lipid Res. 2014 Apr;55(4):645-58. doi: 10.1194/jlr.M043471. Epub 2014 Feb 3. J Lipid Res. 2014. PMID: 24493834 Free PMC article. - A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals.
Uno K, Yamada T, Ishigaki Y, Imai J, Hasegawa Y, Sawada S, Kaneko K, Ono H, Asano T, Oka Y, Katagiri H. Uno K, et al. Nat Commun. 2015 Aug 13;6:7940. doi: 10.1038/ncomms8940. Nat Commun. 2015. PMID: 26268630 Free PMC article. - Inhibition of cardiac lipoprotein utilization by transgenic overexpression of Angptl4 in the heart.
Yu X, Burgess SC, Ge H, Wong KK, Nassem RH, Garry DJ, Sherry AD, Malloy CR, Berger JP, Li C. Yu X, et al. Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1767-72. doi: 10.1073/pnas.0409564102. Epub 2005 Jan 19. Proc Natl Acad Sci U S A. 2005. PMID: 15659544 Free PMC article. - Mechanism of reduced myocardial glucose utilization during acute hypertriglyceridemia in rats.
Ménard SL, Ci X, Frisch F, Normand-Lauzière F, Cadorette J, Ouellet R, Van Lier JE, Bénard F, Bentourkia M, Lecomte R, Carpentier AC. Ménard SL, et al. Mol Imaging Biol. 2009 Jan-Feb;11(1):6-14. doi: 10.1007/s11307-008-0171-2. Epub 2008 Sep 4. Mol Imaging Biol. 2009. PMID: 18769973
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous