HIV-1 dynamics in vivo: implications for therapy - PubMed (original) (raw)
Review
HIV-1 dynamics in vivo: implications for therapy
Viviana Simon et al. Nat Rev Microbiol. 2003 Dec.
Abstract
The advent of potent combination antiretroviral therapy has been an important breakthrough in the treatment of HIV-1 infection, resulting in marked reductions in HIV-1-related morbidity and mortality. Antiretroviral therapy has also provided researchers with a powerful tool to perturb the equilibrium of viral production and viral clearance, allowing them to dissect the underlying dynamics that control the pathogenesis of AIDS. Here, we review our current understanding of the sources of HIV-1 production, the estimates for the virion and the host-cell half-lives, and the pathways of virion trafficking and clearance. We also discuss the obstacles that result from the ability of HIV-1 to remain dormant for a prolonged period of time in a subset of long-lived cells, despite an apparently effective antiretroviral treatment.
Similar articles
- [Viral dynamics in the course of HIV-1 infection: pathogenetic features and new therapeutic prospects].
Marcello A, Giacca M. Marcello A, et al. Pathologica. 2000 Aug;92(4):291-3. Pathologica. 2000. PMID: 11029891 Italian. No abstract available. - Latency: the hidden HIV-1 challenge.
Marcello A. Marcello A. Retrovirology. 2006 Jan 16;3:7. doi: 10.1186/1742-4690-3-7. Retrovirology. 2006. PMID: 16412247 Free PMC article. Review. - HIV-1 viral rebound dynamics after a single treatment interruption depends on time of initiation of highly active antiretroviral therapy.
Steingrover R, Pogány K, Fernandez Garcia E, Jurriaans S, Brinkman K, Schuitemaker H, Miedema F, Lange JM, Prins JM. Steingrover R, et al. AIDS. 2008 Aug 20;22(13):1583-8. doi: 10.1097/QAD.0b013e328305bd77. AIDS. 2008. PMID: 18670217 - HIV-1 dynamics after transient antiretroviral therapy: implications for pathogenesis and clinical management.
Phillips AN, McLean A, Johnson MA, Tyrer M, Emery V, Griffiths P, Bofill M, Janossy G, Loveday C. Phillips AN, et al. J Med Virol. 1997 Nov;53(3):261-5. J Med Virol. 1997. PMID: 9365893 - Reservoirs of HIV-1 in vivo: implications for antiretroviral therapy.
Saksena NK, Potter SJ. Saksena NK, et al. AIDS Rev. 2003 Jan-Mar;5(1):3-18. AIDS Rev. 2003. PMID: 12875103 Review.
Cited by
- Perspectives on Non-BLT Humanized Mouse Models for Studying HIV Pathogenesis and Therapy.
Terahara K, Iwabuchi R, Tsunetsugu-Yokota Y. Terahara K, et al. Viruses. 2021 Apr 28;13(5):776. doi: 10.3390/v13050776. Viruses. 2021. PMID: 33924786 Free PMC article. Review. - Emergence of recombinant forms of HIV: dynamics and scaling.
Suryavanshi GW, Dixit NM. Suryavanshi GW, et al. PLoS Comput Biol. 2007 Oct;3(10):2003-18. doi: 10.1371/journal.pcbi.0030205. Epub 2007 Sep 6. PLoS Comput Biol. 2007. PMID: 17967052 Free PMC article. - Computational models of HIV-1 resistance to gene therapy elucidate therapy design principles.
Aviran S, Shah PS, Schaffer DV, Arkin AP. Aviran S, et al. PLoS Comput Biol. 2010 Aug 12;6(8):e1000883. doi: 10.1371/journal.pcbi.1000883. PLoS Comput Biol. 2010. PMID: 20711350 Free PMC article. - Defective plasmacytoid dendritic cell-NK cell cross-talk in HIV infection.
Reitano KN, Kottilil S, Gille CM, Zhang X, Yan M, O'Shea MA, Roby G, Hallahan CW, Yang J, Lempicki RA, Arthos J, Fauci AS. Reitano KN, et al. AIDS Res Hum Retroviruses. 2009 Oct;25(10):1029-37. doi: 10.1089/aid.2008.0311. AIDS Res Hum Retroviruses. 2009. PMID: 19795986 Free PMC article. - HIV-1 target cells in the CNS.
Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R. Joseph SB, et al. J Neurovirol. 2015 Jun;21(3):276-89. doi: 10.1007/s13365-014-0287-x. Epub 2014 Sep 19. J Neurovirol. 2015. PMID: 25236812 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical