Toxicity of amyloid beta peptide: tales of calcium, mitochondria, and oxidative stress - PubMed (original) (raw)
Review
Toxicity of amyloid beta peptide: tales of calcium, mitochondria, and oxidative stress
Laura Canevari et al. Neurochem Res. 2004 Mar.
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Abeta) peptides. Although the disease undoubtedly reflects the interaction of complex multifactorial processes, Abeta itself is toxic to neurons in vitro and the load of Abeta in vivo correlates well with the degree of cognitive impairment. There has therefore been considerable interest in the mechanism(s) of Abeta neurotoxicity. We here review the basic biology of Abeta processing and consider some of the major areas of focus of this research. It is clear that both AD and Abeta toxicity are characterized by oxidative stress, alterations in the activity of enzymes of intermediary metabolism, and mitochondrial dysfunction, especially impaired activity of cytochrome c oxidase. Studies in vitro also show alterations in cellular calcium signaling. We consider the mechanisms proposed to mediate cell injury and explore evidence to indicate which of these many changes in function are primary and which secondary.
Similar articles
- Cell degeneration induced by amyloid-beta peptides: implications for Alzheimer's disease.
Pereira C, Ferreiro E, Cardoso SM, de Oliveira CR. Pereira C, et al. J Mol Neurosci. 2004;23(1-2):97-104. doi: 10.1385/JMN:23:1-2:097. J Mol Neurosci. 2004. PMID: 15126695 Review. - Salvianolic acid B attenuates mitochondrial stress against Aβ toxicity in primary cultured mouse neurons.
He Y, Jia K, Li L, Wang Q, Zhang S, Du J, Du H. He Y, et al. Biochem Biophys Res Commun. 2018 Apr 15;498(4):1066-1072. doi: 10.1016/j.bbrc.2018.03.119. Epub 2018 Mar 19. Biochem Biophys Res Commun. 2018. PMID: 29551684 - Amyloid beta peptide induces cytochrome C release from isolated mitochondria.
Kim HS, Lee JH, Lee JP, Kim EM, Chang KA, Park CH, Jeong SJ, Wittendorp MC, Seo JH, Choi SH, Suh YH. Kim HS, et al. Neuroreport. 2002 Oct 28;13(15):1989-93. doi: 10.1097/00001756-200210280-00032. Neuroreport. 2002. PMID: 12395106 - [Oxidative stress and Alzheimer's disease].
Liu XJ, Yang W, Qi JS. Liu XJ, et al. Sheng Li Xue Bao. 2012 Feb 25;64(1):87-95. Sheng Li Xue Bao. 2012. PMID: 22348966 Review. Chinese.
Cited by
- Stabilization and Reduced Cytotoxicity of Amyloid Beta Aggregates in the Presence of Catechol Neurotransmitters.
Allnutt MA, Matera KM. Allnutt MA, et al. Neurochem Res. 2024 Feb;49(2):379-387. doi: 10.1007/s11064-023-04036-1. Epub 2023 Oct 17. Neurochem Res. 2024. PMID: 37847330 - Comparison of the different isoforms of vitamin e against amyloid beta-induced neurodegeneration.
Özdemir AY, Akbay E, Onur MA. Özdemir AY, et al. Turk J Biol. 2022 Aug 16;46(5):388-399. doi: 10.55730/1300-0152.2625. eCollection 2022. Turk J Biol. 2022. PMID: 37529005 Free PMC article. - Alzheimer's disease: a mini-review for the clinician.
Madnani RS. Madnani RS. Front Neurol. 2023 Jun 22;14:1178588. doi: 10.3389/fneur.2023.1178588. eCollection 2023. Front Neurol. 2023. PMID: 37426432 Free PMC article. Review. - Protein Interactome of Amyloid-β as a Therapeutic Target.
Lazarev VF, Dutysheva EA, Kanunikov IE, Guzhova IV, Margulis BA. Lazarev VF, et al. Pharmaceuticals (Basel). 2023 Feb 16;16(2):312. doi: 10.3390/ph16020312. Pharmaceuticals (Basel). 2023. PMID: 37259455 Free PMC article. Review. - Using Optogenetics to Model Cellular Effects of Alzheimer's Disease.
Tiwari P, Tolwinski NS. Tiwari P, et al. Int J Mol Sci. 2023 Feb 21;24(5):4300. doi: 10.3390/ijms24054300. Int J Mol Sci. 2023. PMID: 36901729 Free PMC article. Review.
References
- J Biol Chem. 1999 Sep 3;274(36):25945-52 - PubMed
- FASEB J. 2001 Nov;15(13):2433-44 - PubMed
- Neuroreport. 1999 Jan 18;10(1):41-6 - PubMed
- Prog Brain Res. 2001;132:555-65 - PubMed
- J Neurochem. 2000 Oct;75(4):1438-46 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical