Prevalence of antimicrobial resistance in bacteria isolated from central nervous system specimens as reported by U.S. hospital laboratories from 2000 to 2002 - PubMed (original) (raw)
Prevalence of antimicrobial resistance in bacteria isolated from central nervous system specimens as reported by U.S. hospital laboratories from 2000 to 2002
Mark E Jones et al. Ann Clin Microbiol Antimicrob. 2004.
Abstract
Background: Bacterial infections of the central nervous system, especially acute infections such as bacterial meningitis require immediate, invariably empiric antibiotic therapy. The widespread emergence of resistance among bacterial species is a cause for concern. Current antibacterial susceptibility data among central nervous system (CNS) pathogens is important to define current prevalence of resistance.
Methods: Antimicrobial susceptibility of pathogens isolated from CNS specimens was analyzed using The Surveillance Database (TSN) USA Database which gathers routine antibiotic susceptibility data from >300 US hospital laboratories. A total of 6029 organisms derived from CNS specimen sources during 2000-2002, were isolated and susceptibility tested.
Results: Staphylococcus aureus (23.7%) and Streptococcus pneumoniae (11.0%) were the most common gram-positive pathogens. Gram-negative species comprised approximately 25% of isolates. The modal patient age was 1 or <1 year for most organisms. Prevalence of MRSA among S. aureus from cerebrospinal fluid (CSF) and brain abscesses were 29.9-32.9%. Penicillin resistance rates were 16.6% for S. pneumoniae, 5.3% for viridans group streptococci, and 0% for S. agalactiae. For CSF isolates, ceftriaxone resistance was S. pneumoniae (3.5%), E. coli (0.6%), Klebsiella pneumoniae (2.8%), Serratia marcescens (5.6%), Enterobacter cloacae (25.0%), Haemophilus influenzae (0%). Listeria monocytogenes and N. meningitidis are not routinely susceptibility tested.
Conclusions: Resistance is commonly detected, albeit still at relatively low levels for key drugs classes such as third-generation cephalosporins. This data demonstrates the need to consider predominant resistance phenotypes when choosing empiric therapies to treat CNS infections.
Similar articles
- Antimicrobial sensitivity patterns of cerebrospinal fluid (CSF) isolates in Namibia: implications for empirical antibiotic treatment of meningitis.
Mengistu A, Gaeseb J, Uaaka G, Ndjavera C, Kambyambya K, Indongo L, Kalemeera F, Ntege C, Mabirizi D, Joshi MP, Sagwa E. Mengistu A, et al. J Pharm Policy Pract. 2013 Jun 13;6:4. doi: 10.1186/2052-3211-6-4. eCollection 2013. J Pharm Policy Pract. 2013. PMID: 24764539 Free PMC article. - Bacterial and fungal meningitis and antimicrobial susceptibility pattern in Tikur Anbessa University Hospital, Addis Ababa, Ethiopia.
Mengistu M, Asrat D, Woldeamanuel Y, Mengistu G. Mengistu M, et al. Ethiop Med J. 2011 Oct;49(4):349-59. Ethiop Med J. 2011. PMID: 23409400 - Comparisons of parenteral broad-spectrum cephalosporins tested against bacterial isolates from pediatric patients: report from the SENTRY Antimicrobial Surveillance Program (1998-2004).
Jones RN, Sader HS, Fritsche TR, Pottumarthy S. Jones RN, et al. Diagn Microbiol Infect Dis. 2007 Jan;57(1):109-16. doi: 10.1016/j.diagmicrobio.2006.06.011. Epub 2006 Aug 23. Diagn Microbiol Infect Dis. 2007. PMID: 16930923 - In vitro activity of ceftaroline against multidrug-resistant Staphylococcus aureus and Streptococcus pneumoniae: a review of published studies and the AWARE Surveillance Program (2008-2010).
Farrell DJ, Castanheira M, Mendes RE, Sader HS, Jones RN. Farrell DJ, et al. Clin Infect Dis. 2012 Sep;55 Suppl 3:S206-14. doi: 10.1093/cid/cis563. Clin Infect Dis. 2012. PMID: 22903953 Review. - Molecular mechanisms of bacterial infections of the central nervous system.
Rzaska M, Niewiadomski S, Karwacki Z. Rzaska M, et al. Anaesthesiol Intensive Ther. 2017;49(5):387-392. doi: 10.5603/AIT.2017.0080. Anaesthesiol Intensive Ther. 2017. PMID: 29286530 Review.
Cited by
- Methicillin-resistant Staphylococcus aureus prevalence: current susceptibility patterns in Trinidad.
Orrett FA, Land M. Orrett FA, et al. BMC Infect Dis. 2006 May 5;6:83. doi: 10.1186/1471-2334-6-83. BMC Infect Dis. 2006. PMID: 16677377 Free PMC article. - Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection.
Vidlak D, Kielian T. Vidlak D, et al. J Neuroinflammation. 2012 Jun 15;9:128. doi: 10.1186/1742-2094-9-128. J Neuroinflammation. 2012. PMID: 22704602 Free PMC article. - Microglia in infectious diseases of the central nervous system.
Mariani MM, Kielian T. Mariani MM, et al. J Neuroimmune Pharmacol. 2009 Dec;4(4):448-61. doi: 10.1007/s11481-009-9170-6. Epub 2009 Sep 2. J Neuroimmune Pharmacol. 2009. PMID: 19728102 Free PMC article. Review. - Antimicrobial sensitivity patterns of cerebrospinal fluid (CSF) isolates in Namibia: implications for empirical antibiotic treatment of meningitis.
Mengistu A, Gaeseb J, Uaaka G, Ndjavera C, Kambyambya K, Indongo L, Kalemeera F, Ntege C, Mabirizi D, Joshi MP, Sagwa E. Mengistu A, et al. J Pharm Policy Pract. 2013 Jun 13;6:4. doi: 10.1186/2052-3211-6-4. eCollection 2013. J Pharm Policy Pract. 2013. PMID: 24764539 Free PMC article. - Pharmacodynamic evaluation of meropenem and cefotaxime for pediatric meningitis: a report from the OPTAMA program.
Ellis JM, Kuti JL, Nicolau DP. Ellis JM, et al. Paediatr Drugs. 2006;8(2):131-8. doi: 10.2165/00148581-200608020-00005. Paediatr Drugs. 2006. PMID: 16608373
References
LinkOut - more resources
Full Text Sources