Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line - PubMed (original) (raw)
Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line
Takahisa Tarumoto et al. Exp Hematol. 2004 Apr.
Free article
Abstract
Objective: Imatinib, a BCR/ABL tyrosine kinase inhibitor, has shown remarkable clinical effects in chronic myelogenous leukemia. However, the leukemia cells become resistant to this drug in most blast crisis cases. The transcription factor Nrf2 regulates the gene expression of a number of detoxifying enzymes such as gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme in glutathione (GSH) synthesis, via the antioxidant response element (ARE). In this study, we examined the involvement of Nrf2 in the acquisition of resistance to imatinib. Since oxidative stress promotes the translocation of Nrf2 from the cytoplasm to the nucleus, we also examined whether ascorbic acid, a reducing reagent, can overcome the resistance to imatinib by inhibiting Nrf2 activity.
Results: Binding of Nrf2 to the ARE of the gamma-GCS light subunit (gamma-GCSl) gene promoter was much stronger in the imatinib-resistant cell line KCL22/SR than in the parental imatinib-sensitive cell line KCL22. The levels of gamma-GCSl mRNA and GSH were higher in KCL22/SR cells, a finding consistent with the observation of an increase in Nrf2-DNA binding. Addition of a GSH monoester to KCL22 cells resulted in an increase in the IC(50) value of imatinib. In contrast, addition of ascorbic acid to KCL22/SR cells resulted in a decrease in Nrf2-DNA binding and decreases in levels of gamma-GCSl mRNA and GSH. Consistent with these findings, ascorbic acid partly restored imatinib sensitivity to KCL22/SR.
Conclusion: Changes in the redox state caused by antioxidants such as ascorbic acid can overcome resistance to imatinib via inhibition of Nrf2-mediated gene expression.
Similar articles
- Analysis of gene expression profiles in an imatinib-resistant cell line, KCL22/SR.
Ohmine K, Nagai T, Tarumoto T, Miyoshi T, Muroi K, Mano H, Komatsu N, Takaku F, Ozawa K. Ohmine K, et al. Stem Cells. 2003;21(3):315-21. doi: 10.1634/stemcells.21-3-315. Stem Cells. 2003. PMID: 12743326 - Hemin reduces cellular sensitivity to imatinib and anthracyclins via Nrf2.
Nagai T, Kikuchi S, Ohmine K, Miyoshi T, Nakamura M, Kondo T, Furuyama K, Komatsu N, Ozawa K. Nagai T, et al. J Cell Biochem. 2008 May 15;104(2):680-91. doi: 10.1002/jcb.21659. J Cell Biochem. 2008. PMID: 18172853 - Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia.
Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A, Pattacini L, Goldman JM, Melo JV. Barnes DJ, et al. Cancer Res. 2005 Oct 1;65(19):8912-9. doi: 10.1158/0008-5472.CAN-05-0076. Cancer Res. 2005. PMID: 16204063 - Resistance to targeted therapy in chronic myelogenous leukemia.
Hochhaus A, Erben P, Ernst T, Mueller MC. Hochhaus A, et al. Semin Hematol. 2007 Jan;44(1 Suppl 1):S15-24. doi: 10.1053/j.seminhematol.2006.12.002. Semin Hematol. 2007. PMID: 17292737 Review. - Importance of glutathione and associated enzymes in drug response.
Shen H, Kauvar L, Tew KD. Shen H, et al. Oncol Res. 1997;9(6-7):295-302. Oncol Res. 1997. PMID: 9406235 Review.
Cited by
- Thyroid-associated ophthalmopathy: the role of oxidative stress.
Ma C, Li H, Lu S, Li X. Ma C, et al. Front Endocrinol (Lausanne). 2024 Jul 11;15:1400869. doi: 10.3389/fendo.2024.1400869. eCollection 2024. Front Endocrinol (Lausanne). 2024. PMID: 39055057 Free PMC article. Review. - ACA-28, an ERK MAPK Signaling Modulator, Exerts Anticancer Activity through ROS Induction in Melanoma and Pancreatic Cancer Cells.
Takasaki T, Hamabe Y, Touchi K, Khandakar GI, Ueda T, Okada H, Sakai K, Nishio K, Tanabe G, Sugiura R. Takasaki T, et al. Oxid Med Cell Longev. 2024 Mar 11;2024:7683793. doi: 10.1155/2024/7683793. eCollection 2024. Oxid Med Cell Longev. 2024. PMID: 38500550 Free PMC article. - Vitamin C Inhibits Lipopolysaccharide-Induced Hyperinflammatory State of Chronic Myeloid Leukemia Cells through Purinergic Signaling and Autophagy.
Pires DA, Brandão-Rangel MAR, Silva-Reis A, Olímpio FRS, Aimbire F, Oliveira CR, Mateus-Silva JR, Zamarioli LS, Bachi ALL, Bella YF, Santos JMB, Bincoletto C, Lancha AH Jr, Vieira RP. Pires DA, et al. Nutrients. 2024 Jan 29;16(3):383. doi: 10.3390/nu16030383. Nutrients. 2024. PMID: 38337668 Free PMC article. - The Multifaceted Roles of NRF2 in Cancer: Friend or Foe?
Glorieux C, Enríquez C, González C, Aguirre-Martínez G, Buc Calderon P. Glorieux C, et al. Antioxidants (Basel). 2024 Jan 2;13(1):70. doi: 10.3390/antiox13010070. Antioxidants (Basel). 2024. PMID: 38247494 Free PMC article. Review. - Natural Nrf2 Inhibitors: A Review of Their Potential for Cancer Treatment.
Zhang J, Xu HX, Zhu JQ, Dou YX, Xian YF, Lin ZX. Zhang J, et al. Int J Biol Sci. 2023 Jun 4;19(10):3029-3041. doi: 10.7150/ijbs.82401. eCollection 2023. Int J Biol Sci. 2023. PMID: 37416770 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous