Detecting differential gene expression with a semiparametric hierarchical mixture method - PubMed (original) (raw)
Comparative Study
Detecting differential gene expression with a semiparametric hierarchical mixture method
Michael A Newton et al. Biostatistics. 2004 Apr.
Abstract
Mixture modeling provides an effective approach to the differential expression problem in microarray data analysis. Methods based on fully parametric mixture models are available, but lack of fit in some examples indicates that more flexible models may be beneficial. Existing, more flexible, mixture models work at the level of one-dimensional gene-specific summary statistics, and so when there are relatively few measurements per gene these methods may not provide sensitive detectors of differential expression. We propose a hierarchical mixture model to provide methodology that is both sensitive in detecting differential expression and sufficiently flexible to account for the complex variability of normalized microarray data. EM-based algorithms are used to fit both parametric and semiparametric versions of the model. We restrict attention to the two-sample comparison problem; an experiment involving Affymetrix microarrays and yeast translation provides the motivating case study. Gene-specific posterior probabilities of differential expression form the basis of statistical inference; they define short gene lists and false discovery rates. Compared to several competing methodologies, the proposed methodology exhibits good operating characteristics in a simulation study, on the analysis of spike-in data, and in a cross-validation calculation.
Similar articles
- Flexible empirical Bayes models for differential gene expression.
Lo K, Gottardo R. Lo K, et al. Bioinformatics. 2007 Feb 1;23(3):328-35. doi: 10.1093/bioinformatics/btl612. Epub 2006 Nov 30. Bioinformatics. 2007. PMID: 17138586 - Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.
Shedden K, Chen W, Kuick R, Ghosh D, Macdonald J, Cho KR, Giordano TJ, Gruber SB, Fearon ER, Taylor JM, Hanash S. Shedden K, et al. BMC Bioinformatics. 2005 Feb 10;6:26. doi: 10.1186/1471-2105-6-26. BMC Bioinformatics. 2005. PMID: 15705192 Free PMC article. - Multidimensional local false discovery rate for microarray studies.
Ploner A, Calza S, Gusnanto A, Pawitan Y. Ploner A, et al. Bioinformatics. 2006 Mar 1;22(5):556-65. doi: 10.1093/bioinformatics/btk013. Epub 2005 Dec 20. Bioinformatics. 2006. PMID: 16368770 - A Gibbs sampler for the identification of gene expression and network connectivity consistency.
Brynildsen MP, Tran LM, Liao JC. Brynildsen MP, et al. Bioinformatics. 2006 Dec 15;22(24):3040-6. doi: 10.1093/bioinformatics/btl541. Epub 2006 Oct 23. Bioinformatics. 2006. PMID: 17060361 - Microarray data analysis: a hierarchical T-test to handle heteroscedasticity.
de Menezes RX, Boer JM, van Houwelingen HC. de Menezes RX, et al. Appl Bioinformatics. 2004;3(4):229-35. Appl Bioinformatics. 2004. PMID: 15702953
Cited by
- A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data.
Zhang M, Li Q, Xie Y. Zhang M, et al. Quant Biol. 2018 Sep;6(3):275-286. doi: 10.1007/s40484-018-0149-2. Epub 2018 Aug 30. Quant Biol. 2018. PMID: 33833899 Free PMC article. - Flexible experimental designs for valid single-cell RNA-sequencing experiments allowing batch effects correction.
Song F, Chan GMA, Wei Y. Song F, et al. Nat Commun. 2020 Jul 1;11(1):3274. doi: 10.1038/s41467-020-16905-2. Nat Commun. 2020. PMID: 32612268 Free PMC article. - Harnessing naturally randomized transcription to infer regulatory relationships among genes.
Chen LS, Emmert-Streib F, Storey JD. Chen LS, et al. Genome Biol. 2007;8(10):R219. doi: 10.1186/gb-2007-8-10-r219. Genome Biol. 2007. PMID: 17931418 Free PMC article. - Operon information improves gene expression estimation for cDNA microarrays.
Xiao G, Martinez-Vaz B, Pan W, Khodursky AB. Xiao G, et al. BMC Genomics. 2006 Apr 21;7:87. doi: 10.1186/1471-2164-7-87. BMC Genomics. 2006. PMID: 16630355 Free PMC article. - Accounting for measurement error to assess the effect of air pollution on omic signals.
Ponzi E, Vineis P, Chung KF, Blangiardo M. Ponzi E, et al. PLoS One. 2020 Jan 2;15(1):e0226102. doi: 10.1371/journal.pone.0226102. eCollection 2020. PLoS One. 2020. PMID: 31896134 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases