The role of the medial prefrontal cortex in achieving goals - PubMed (original) (raw)
Review
The role of the medial prefrontal cortex in achieving goals
Kenji Matsumoto et al. Curr Opin Neurobiol. 2004 Apr.
Abstract
Achieving goals in changing environments requires the course of action to be selected on the basis of goal expectation and memory of action-outcome contingency. It is often also essential to evaluate action on the basis of immediate outcomes and the discrimination of early action steps from the final step towards the goal. Recently, in single-cell recordings in monkeys, the neuronal activity that appears to underlie these processes has been noted in the medial part of the prefrontal cortex. Medial prefrontal cells were also active when the subjects extracted the rules of a task in a novel environment. The processes described above might play important roles in rule learning.
Similar articles
- Neuronal correlates of goal-based motor selection in the prefrontal cortex.
Matsumoto K, Suzuki W, Tanaka K. Matsumoto K, et al. Science. 2003 Jul 11;301(5630):229-32. doi: 10.1126/science.1084204. Science. 2003. PMID: 12855813 - Representation of immediate and final behavioral goals in the monkey prefrontal cortex during an instructed delay period.
Saito N, Mushiake H, Sakamoto K, Itoyama Y, Tanji J. Saito N, et al. Cereb Cortex. 2005 Oct;15(10):1535-46. doi: 10.1093/cercor/bhi032. Epub 2005 Feb 9. Cereb Cortex. 2005. PMID: 15703260 - Relative reward preference in primate orbitofrontal cortex.
Tremblay L, Schultz W. Tremblay L, et al. Nature. 1999 Apr 22;398(6729):704-8. doi: 10.1038/19525. Nature. 1999. PMID: 10227292 - Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
Hollerman JR, Tremblay L, Schultz W. Hollerman JR, et al. Prog Brain Res. 2000;126:193-215. doi: 10.1016/S0079-6123(00)26015-9. Prog Brain Res. 2000. PMID: 11105648 Review. - Reward-dependent learning in neuronal networks for planning and decision making.
Dehaene S, Changeux JP. Dehaene S, et al. Prog Brain Res. 2000;126:217-29. doi: 10.1016/S0079-6123(00)26016-0. Prog Brain Res. 2000. PMID: 11105649 Review.
Cited by
- Attentional impairment and altered brain activity in healthcare workers after mild COVID-19.
Lin K, Gao Y, Ji W, Li Y, Wang W, Du M, Liu J, Hong Z, Jiang T, Wang Y. Lin K, et al. Brain Imaging Behav. 2024 Jun;18(3):566-575. doi: 10.1007/s11682-024-00851-4. Epub 2024 Feb 1. Brain Imaging Behav. 2024. PMID: 38296922 Free PMC article. - Combined application of behavior genetics and microarray analysis to identify regional expression themes and gene-behavior associations.
Letwin NE, Kafkafi N, Benjamini Y, Mayo C, Frank BC, Luu T, Lee NH, Elmer GI. Letwin NE, et al. J Neurosci. 2006 May 17;26(20):5277-87. doi: 10.1523/JNEUROSCI.4602-05.2006. J Neurosci. 2006. PMID: 16707780 Free PMC article. - The nucleus accumbens as a nexus between values and goals in goal-directed behavior: a review and a new hypothesis.
Mannella F, Gurney K, Baldassarre G. Mannella F, et al. Front Behav Neurosci. 2013 Oct 23;7:135. doi: 10.3389/fnbeh.2013.00135. eCollection 2013. Front Behav Neurosci. 2013. PMID: 24167476 Free PMC article. - Pre-adolescent alcohol expectancies: critical shifts and associated maturational processes.
Bekman NM, Goldman MS, Worley MJ, Anderson KG. Bekman NM, et al. Exp Clin Psychopharmacol. 2011 Dec;19(6):420-32. doi: 10.1037/a0025373. Epub 2011 Sep 26. Exp Clin Psychopharmacol. 2011. PMID: 21942260 Free PMC article. - Strength and Diversity of Inhibitory Signaling Differentiates Primate Anterior Cingulate from Lateral Prefrontal Cortex.
Medalla M, Gilman JP, Wang JY, Luebke JI. Medalla M, et al. J Neurosci. 2017 May 3;37(18):4717-4734. doi: 10.1523/JNEUROSCI.3757-16.2017. Epub 2017 Apr 5. J Neurosci. 2017. PMID: 28381592 Free PMC article.