Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes - PubMed (original) (raw)
Comparative Study
Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes
Ruslan Kalendar et al. Genetics. 2004 Mar.
Abstract
Retroviruses and LTR retrotransposons comprise two long-terminal repeats (LTRs) bounding a central domain that encodes the products needed for reverse transcription, packaging, and integration into the genome. We describe a group of retrotransposons in 13 species and four genera of the grass tribe Triticeae, including barley, with long, approximately 4.4-kb LTRs formerly called Sukkula elements. The approximately 3.5-kb central domains include reverse transcriptase priming sites and are conserved in sequence but contain no open reading frames encoding typical retrotransposon proteins. However, they specify well-conserved RNA secondary structures. These features describe a novel group of elements, called LARDs or large retrotransposon derivatives (LARDs). These appear to be members of the gypsy class of LTR retrotransposons. Although apparently nonautonomous, LARDs appear to be transcribed and can be recombinationally mapped due to the polymorphism of their insertion sites. They are dispersed throughout the genome in an estimated 1.3 x 10(3) full-length copies and 1.16 x 10(4) solo LTRs, indicating frequent recombinational loss of internal domains as demonstrated also for the BARE-1 barley retrotransposon.
Similar articles
- Structure, functionality, and evolution of the BARE-1 retrotransposon of barley.
Vicient CM, Kalendar R, Anamthawat-Jónsson K, Schulman AH. Vicient CM, et al. Genetica. 1999;107(1-3):53-63. Genetica. 1999. PMID: 10952197 - LINEs and gypsy-like retrotransposons in Hordeum species.
Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop-Harrison JS. Vershinin AV, et al. Plant Mol Biol. 2002 May;49(1):1-14. doi: 10.1023/a:1014469830680. Plant Mol Biol. 2002. PMID: 12008894 - BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites.
Suoniemi A, Schmidt D, Schulman AH. Suoniemi A, et al. Genetica. 1997;100(1-3):219-30. Genetica. 1997. PMID: 9440275 - A movable feast: diverse retrotransposons and their contribution to barley genome dynamics.
Schulman AH, Kalendar R. Schulman AH, et al. Cytogenet Genome Res. 2005;110(1-4):598-605. doi: 10.1159/000084993. Cytogenet Genome Res. 2005. PMID: 16093713 Review. - Gene-containing regions of wheat and the other grass genomes.
Sandhu D, Gill KS. Sandhu D, et al. Plant Physiol. 2002 Mar;128(3):803-11. doi: 10.1104/pp.010745. Plant Physiol. 2002. PMID: 11891237 Free PMC article. Review.
Cited by
- Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR Swapping in soybean.
Du J, Tian Z, Bowen NJ, Schmutz J, Shoemaker RC, Ma J. Du J, et al. Plant Cell. 2010 Jan;22(1):48-61. doi: 10.1105/tpc.109.068775. Epub 2010 Jan 15. Plant Cell. 2010. PMID: 20081112 Free PMC article. - Temporal dynamics in the evolution of the sunflower genome as revealed by sequencing and annotation of three large genomic regions.
Buti M, Giordani T, Cattonaro F, Cossu RM, Pistelli L, Vukich M, Morgante M, Cavallini A, Natali L. Buti M, et al. Theor Appl Genet. 2011 Sep;123(5):779-91. doi: 10.1007/s00122-011-1626-4. Epub 2011 Jun 7. Theor Appl Genet. 2011. PMID: 21647740 - The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes.
Almojil D, Bourgeois Y, Falis M, Hariyani I, Wilcox J, Boissinot S. Almojil D, et al. Genes (Basel). 2021 Jun 15;12(6):918. doi: 10.3390/genes12060918. Genes (Basel). 2021. PMID: 34203645 Free PMC article. Review. - Retrotransposable Elements: DNA Fingerprinting and the Assessment of Genetic Diversity.
Kalendar R, Muterko A, Boronnikova S. Kalendar R, et al. Methods Mol Biol. 2021;2222:263-286. doi: 10.1007/978-1-0716-0997-2_15. Methods Mol Biol. 2021. PMID: 33301099 - A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes.
Gao D, Chen J, Chen M, Meyers BC, Jackson S. Gao D, et al. PLoS One. 2012;7(2):e32010. doi: 10.1371/journal.pone.0032010. Epub 2012 Feb 16. PLoS One. 2012. PMID: 22359654 Free PMC article.
References
- Plant Mol Biol. 2002 Mar-Apr;48(5-6):767-90 - PubMed
- Plant J. 2001 May;26(3):307-16 - PubMed
- Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13778-83 - PubMed
- Mol Phylogenet Evol. 1997 Apr;7(2):217-30 - PubMed
- Mol Gen Genet. 1999 Jan;260(6):593-602 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources