Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP - PubMed (original) (raw)
Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP
Céline Poux et al. Am J Phys Anthropol. 2004 May.
Abstract
The first third (ca. 1200 bp) of exon 1 of the nuclear gene encoding the interstitial retinoid-binding protein (IRBP) has been sequenced for 12 representative primates belonging to Lemuriformes, Lorisiformes, Tarsiiformes, Platyrrhini, and Catarrhini, and combined with available data (13 other primates, 11 nonprimate placentals, and 2 marsupials). Phylogenetic analyses using maximum likelihood on nucleotides and amino acids robustly support the monophyly of primates, Strepsirrhini, Lemuriformes, Lorisiformes, Anthropoidea, Catarrhini, and Platyrrhini. It is interesting to note that 1) Tarsiidae grouped with Anthropoidea, and the support for this node depends on the molecular characters considered; 2) Cheirogaleidae grouped within Lemuriformes; and 3) Daubentonia was the sister group of all other Lemuriformes. Study of the IRBP evolutionary rate shows a high heterogeneity within placentals and also within primates. Maximum likelihood local molecular clocks were assigned to three clades displaying significantly contrasted evolutionary rates. Paenungulata were shown to evolve 2.5-3 times faster than Perissodactyla and Lemuriformes. Six independent calibration points were used to estimate splitting ages of the main primate clades, and their compatibility was evaluated. Divergence ages were obtained for the following crown groups: 13.8-14.2 MY for Lorisiformes, 26.5-27.2 MY for Lemuroidea, 39.6-40.7 MY for Lemuriformes, 45.4-46.7 MY for Strepsirrhini, and 56.7-58.4 MY for Haplorrhini. The incompatibility between some paleontological and molecular estimates may reflect the incompleteness of the placental fossil record, and/or indicate that the variable IRBP evolutionary rates are not fully accommodated by local molecular clocks.
Copyright 2003 Wiley-Liss, Inc.
Similar articles
- Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs.
Matsui A, Rakotondraparany F, Munechika I, Hasegawa M, Horai S. Matsui A, et al. Gene. 2009 Jul 15;441(1-2):53-66. doi: 10.1016/j.gene.2008.08.024. Epub 2008 Sep 11. Gene. 2009. PMID: 18824224 - Primate phylogeny: morphological vs. molecular results.
Shoshani J, Groves CP, Simons EL, Gunnell GF. Shoshani J, et al. Mol Phylogenet Evol. 1996 Feb;5(1):102-54. doi: 10.1006/mpev.1996.0009. Mol Phylogenet Evol. 1996. PMID: 8673281 Review. - Molecular evidence on primate phylogeny from DNA sequences.
Goodman M, Bailey WJ, Hayasaka K, Stanhope MJ, Slightom J, Czelusniak J. Goodman M, et al. Am J Phys Anthropol. 1994 May;94(1):3-24. doi: 10.1002/ajpa.1330940103. Am J Phys Anthropol. 1994. PMID: 8042704 Review. - Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence.
Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP. Goodman M, et al. Mol Phylogenet Evol. 1998 Jun;9(3):585-98. doi: 10.1006/mpev.1998.0495. Mol Phylogenet Evol. 1998. PMID: 9668008 - Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA.
Fabre PH, Rodrigues A, Douzery EJ. Fabre PH, et al. Mol Phylogenet Evol. 2009 Dec;53(3):808-25. doi: 10.1016/j.ympev.2009.08.004. Epub 2009 Aug 12. Mol Phylogenet Evol. 2009. PMID: 19682589
Cited by
- Deep evolutionary roots of strepsirrhine primate labyrinthine morphology.
Lebrun R, de León MP, Tafforeau P, Zollikofer C. Lebrun R, et al. J Anat. 2010 Mar;216(3):368-80. doi: 10.1111/j.1469-7580.2009.01177.x. Epub 2009 Dec 21. J Anat. 2010. PMID: 20039977 Free PMC article. - Development and application of a phylogenomic toolkit: resolving the evolutionary history of Madagascar's lemurs.
Horvath JE, Weisrock DW, Embry SL, Fiorentino I, Balhoff JP, Kappeler P, Wray GA, Willard HF, Yoder AD. Horvath JE, et al. Genome Res. 2008 Mar;18(3):489-99. doi: 10.1101/gr.7265208. Epub 2008 Feb 1. Genome Res. 2008. PMID: 18245770 Free PMC article. - Control region length dynamics potentially drives amino acid evolution in tarsier mitochondrial genomes.
Merker S, Thomas S, Völker E, Perwitasari-Farajallah D, Feldmeyer B, Streit B, Pfenninger M. Merker S, et al. J Mol Evol. 2014 Aug;79(1-2):40-51. doi: 10.1007/s00239-014-9631-2. Epub 2014 Jul 10. J Mol Evol. 2014. PMID: 25008552 - Efficiency of nuclear and mitochondrial markers recovering and supporting known amniote groups.
Lambret-Frotté J, Perini FA, de Moraes Russo CA. Lambret-Frotté J, et al. Evol Bioinform Online. 2012;8:463-73. doi: 10.4137/EBO.S9656. Epub 2012 Aug 6. Evol Bioinform Online. 2012. PMID: 23032608 Free PMC article. - Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis.
Montgomery SH, Capellini I, Barton RA, Mundy NI. Montgomery SH, et al. BMC Biol. 2010 Jan 27;8:9. doi: 10.1186/1741-7007-8-9. BMC Biol. 2010. PMID: 20105283 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources