Fixation-induced redistribution of hyperphosphorylated RNA polymerase II in the nucleus of human cells - PubMed (original) (raw)
Comparative Study
. 2004 May 1;295(2):460-8.
doi: 10.1016/j.yexcr.2004.01.020.
Affiliations
- PMID: 15093744
- DOI: 10.1016/j.yexcr.2004.01.020
Comparative Study
Fixation-induced redistribution of hyperphosphorylated RNA polymerase II in the nucleus of human cells
Pascale V Guillot et al. Exp Cell Res. 2004.
Abstract
RNA polymerase II (pol II) transcribes the most varied group of genes and is present in hypo- and hyperphosphorylated forms, with residues Ser(2) and Ser(5) of the C-terminal domain (CTD) of the largest subunit as main targets of phosphorylation. The elongating (active) form is phosphorylated on Ser(2) and can be specifically recognized with the H5 antibody. It has been found in different nuclear distributions: in discrete sites throughout the nucleoplasm, consistent with a role in transcription, and/or concentrated in "splicing speckles", a nuclear compartment mostly devoid of transcriptional activity. Here, we assess the effects of cell fixation and permeabilization on the distribution of polymerase II and correlate its distribution with the preservation of cellular ultrastructure. We show that phospho-Ser(2) polymerase II can redistribute to, or be differentially retained in, "speckles" in conditions that do not preserve cellular ultrastructure. The fixation protocols that disrupt polymerase II distribution also cause partial or total loss of TATA-binding protein, Sm antigen and PML staining in PML bodies, and have no noticeable effect in the labeling of SC35 in "splicing speckles" or coilin in Cajal bodies. When nuclear ultrastructure is preserved, phospho-Ser(2) polymerase II is found in discrete sites throughout the nucleoplasm, without visible enrichment within splicing speckles. A minor proportion of the total amount of the phospho-Ser(2) form is present in these domains.
Similar articles
- Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal domain.
Xie SQ, Martin S, Guillot PV, Bentley DL, Pombo A. Xie SQ, et al. Mol Biol Cell. 2006 Apr;17(4):1723-33. doi: 10.1091/mbc.e05-08-0726. Epub 2006 Feb 8. Mol Biol Cell. 2006. PMID: 16467386 Free PMC article. - Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA.
Kim E, Du L, Bregman DB, Warren SL. Kim E, et al. J Cell Biol. 1997 Jan 13;136(1):19-28. doi: 10.1083/jcb.136.1.19. J Cell Biol. 1997. PMID: 9008700 Free PMC article. - Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains.
Bregman DB, Du L, van der Zee S, Warren SL. Bregman DB, et al. J Cell Biol. 1995 Apr;129(2):287-98. doi: 10.1083/jcb.129.2.287. J Cell Biol. 1995. PMID: 7536746 Free PMC article. - Phosphorylation and functions of the RNA polymerase II CTD.
Phatnani HP, Greenleaf AL. Phatnani HP, et al. Genes Dev. 2006 Nov 1;20(21):2922-36. doi: 10.1101/gad.1477006. Genes Dev. 2006. PMID: 17079683 Review. - Spatial organization of RNA polymerase II transcription in the nucleus.
Szentirmay MN, Sawadogo M. Szentirmay MN, et al. Nucleic Acids Res. 2000 May 15;28(10):2019-25. doi: 10.1093/nar/28.10.2019. Nucleic Acids Res. 2000. PMID: 10773068 Free PMC article. Review.
Cited by
- Distribution of different phosphorylated forms of RNA polymerase II in relation to Cajal and PML bodies in human cells: an ultrastructural study.
Xie SQ, Pombo A. Xie SQ, et al. Histochem Cell Biol. 2006 Jan;125(1-2):21-31. doi: 10.1007/s00418-005-0064-2. Epub 2005 Sep 27. Histochem Cell Biol. 2006. PMID: 16187066 - Single-cell c-myc gene expression in relationship to nuclear domains.
Bártová E, Harnicarová A, Krejcí J, Strasák L, Kozubek S. Bártová E, et al. Chromosome Res. 2008;16(2):325-43. doi: 10.1007/s10577-007-1196-0. Epub 2008 Mar 7. Chromosome Res. 2008. PMID: 18320361 - Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal domain.
Xie SQ, Martin S, Guillot PV, Bentley DL, Pombo A. Xie SQ, et al. Mol Biol Cell. 2006 Apr;17(4):1723-33. doi: 10.1091/mbc.e05-08-0726. Epub 2006 Feb 8. Mol Biol Cell. 2006. PMID: 16467386 Free PMC article. - Biological implications and regulatory mechanisms of long-range chromosomal interactions.
Wei Z, Huang D, Gao F, Chang WH, An W, Coetzee GA, Wang K, Lu W. Wei Z, et al. J Biol Chem. 2013 Aug 2;288(31):22369-77. doi: 10.1074/jbc.R113.485292. Epub 2013 Jun 18. J Biol Chem. 2013. PMID: 23779110 Free PMC article. Review. - PML promotes MHC class II gene expression by stabilizing the class II transactivator.
Ulbricht T, Alzrigat M, Horch A, Reuter N, von Mikecz A, Steimle V, Schmitt E, Krämer OH, Stamminger T, Hemmerich P. Ulbricht T, et al. J Cell Biol. 2012 Oct 1;199(1):49-63. doi: 10.1083/jcb.201112015. Epub 2012 Sep 24. J Cell Biol. 2012. PMID: 23007646 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources