A glass/silicon composite intracortical electrode array - PubMed (original) (raw)
A glass/silicon composite intracortical electrode array
K E Jones et al. Ann Biomed Eng. 1992.
Abstract
A new manufacturing technique has been developed for creating silicon-based, penetrating electrode arrays intended for implantation into cerebral cortex. The arrays consist of a 4.2 mm x 4.2 mm glass/silicon composite base, from which project 100 silicon needle-type electrodes in a 10 x 10 array. Each needle is approximately 1,500 microns long, 80 microns in diameter at the base, and tapers to a sharp point at the metalized tip. The technique used to manufacture these arrays differs from our previous method in that a glass dielectric, rather than a p-n-p junction, provides electrical isolation between the individual electrodes in the array. The new electrode arrays exhibit superior electrical properties to those described previously. We have measured interelectrode impedances of at least 10(13) omega, and interelectrode capacitances of approximately 50 fF for the new arrays. In this paper, we describe the manufacturing techniques used to create the arrays, focusing on the dielectric isolation technique, and discuss the electrical and mechanical characteristics of these arrays.
Similar articles
- A 100 electrode intracortical array: structural variability.
Campbell PK, Jones KE, Normann RA. Campbell PK, et al. Biomed Sci Instrum. 1990;26:161-5. Biomed Sci Instrum. 1990. PMID: 2334761 - A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array.
Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA. Campbell PK, et al. IEEE Trans Biomed Eng. 1991 Aug;38(8):758-68. doi: 10.1109/10.83588. IEEE Trans Biomed Eng. 1991. PMID: 1937509 - Scaling limitations of silicon multichannel recording probes.
Najafi K, Ji J, Wise KD. Najafi K, et al. IEEE Trans Biomed Eng. 1990 Jan;37(1):1-11. doi: 10.1109/10.43605. IEEE Trans Biomed Eng. 1990. PMID: 2303265 - Selective electrical interfaces with the nervous system.
Rutten WL. Rutten WL. Annu Rev Biomed Eng. 2002;4:407-52. doi: 10.1146/annurev.bioeng.4.020702.153427. Epub 2002 Mar 22. Annu Rev Biomed Eng. 2002. PMID: 12117764 Review. - Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions.
Tringides CM, Mooney DJ. Tringides CM, et al. Adv Mater. 2022 May;34(20):e2107207. doi: 10.1002/adma.202107207. Epub 2022 Mar 28. Adv Mater. 2022. PMID: 34716730 Review.
Cited by
- Nanoparticles: A Challenging Vehicle for Neural Stimulation.
Colombo E, Feyen P, Antognazza MR, Lanzani G, Benfenati F. Colombo E, et al. Front Neurosci. 2016 Mar 23;10:105. doi: 10.3389/fnins.2016.00105. eCollection 2016. Front Neurosci. 2016. PMID: 27047327 Free PMC article. Review. - Neuroprosthetics in systems neuroscience and medicine.
Kansaku K. Kansaku K. Sci Rep. 2021 Mar 8;11(1):5404. doi: 10.1038/s41598-021-85134-4. Sci Rep. 2021. PMID: 33686138 Free PMC article. - Single-neuron stability during repeated reaching in macaque premotor cortex.
Chestek CA, Batista AP, Santhanam G, Yu BM, Afshar A, Cunningham JP, Gilja V, Ryu SI, Churchland MM, Shenoy KV. Chestek CA, et al. J Neurosci. 2007 Oct 3;27(40):10742-50. doi: 10.1523/JNEUROSCI.0959-07.2007. J Neurosci. 2007. PMID: 17913908 Free PMC article. - Characterization of a-SiC(x):H thin films as an encapsulation material for integrated silicon based neural interface devices.
Hsu JM, Tathireddy P, Rieth L, Normann AR, Solzbacher F. Hsu JM, et al. Thin Solid Films. 2007 Nov 1;516(1):34-41. doi: 10.1016/j.tsf.2007.04.050. Thin Solid Films. 2007. PMID: 18437249 Free PMC article. - A Novel Method of Fabricating Convoluted Shaped Electrode Arrays for Neural and Retinal Prostheses.
Bhandari R, Negi S, Rieth L, Normann RA, Solzbacher F. Bhandari R, et al. Sens Actuators A Phys. 2008;145-146(1-2):123-130. doi: 10.1016/j.sna.2007.10.072. Sens Actuators A Phys. 2008. PMID: 19122774 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Miscellaneous