Studying cardiac arrhythmias in the mouse--a reasonable model for probing mechanisms? - PubMed (original) (raw)
Review
Studying cardiac arrhythmias in the mouse--a reasonable model for probing mechanisms?
Jeanne M Nerbonne. Trends Cardiovasc Med. 2004 Apr.
Abstract
The normal mechanical functioning of the heart depends on proper electrical functioning, reflected in the sequential activation of pacemaker cells, and the normal propagation of activity through the ventricles. Myocardial electrical activity is evident in the form of action potentials, reflecting the activation (and inactivation) of depolarizing (Na(+), Ca(2+)) and repolarizing (K(+)) current channels. There are multiple types of myocardial K(+) channels, contributing to regional differences in action potential waveforms and to the generation of normal cardiac rhythms. The conduction and propagation of activity through the myocardium depends on electrical coupling between cells, mediated by gap junction channels. In the diseased myocardium, action potential waveforms and conduction are affected markedly, owing to changes in the functional expression of repolarizing K(+) and other channels. These changes can lead to desynchronization of the heart and to arrhythmia generation. There is presently greater interest in defining the cellular, molecular, and systemic mechanisms contributing to the generation and the maintenance of cardiac arrhythmias. Although a variety of experimental (animal) model systems have been (and are being) exploited in these efforts, the mouse is being used increasingly, due to the ease with which molecular genetic strategies can be applied. The important issue is whether the mouse is an appropriate model system to explore arrhythmia mechanisms.
Similar articles
- Short-term effects of rapid pacing on mRNA level of voltage-dependent K(+) channels in rat atrium: electrical remodeling in paroxysmal atrial tachycardia.
Yamashita T, Murakawa Y, Hayami N, Fukui Ei, Kasaoka Y, Inoue M, Omata M. Yamashita T, et al. Circulation. 2000 Apr 25;101(16):2007-14. doi: 10.1161/01.cir.101.16.2007. Circulation. 2000. PMID: 10779469 - Expression and coassociation of ERG1, KCNQ1, and KCNE1 potassium channel proteins in horse heart.
Finley MR, Li Y, Hua F, Lillich J, Mitchell KE, Ganta S, Gilmour RF Jr, Freeman LC. Finley MR, et al. Am J Physiol Heart Circ Physiol. 2002 Jul;283(1):H126-38. doi: 10.1152/ajpheart.00622.2001. Am J Physiol Heart Circ Physiol. 2002. PMID: 12063283 - Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
Aimond F, Kwak SP, Rhodes KJ, Nerbonne JM. Aimond F, et al. Circ Res. 2005 Mar 4;96(4):451-8. doi: 10.1161/01.RES.0000156890.25876.63. Epub 2005 Jan 20. Circ Res. 2005. PMID: 15662035 - Structural determinants of potassium channel blockade and drug-induced arrhythmias.
Wehrens XH. Wehrens XH. Handb Exp Pharmacol. 2006;(171):123-57. doi: 10.1007/3-540-29715-4_5. Handb Exp Pharmacol. 2006. PMID: 16610343 Review. - QT interval prolongation and cardiac risk assessment for novel drugs.
Picard S, Lacroix P. Picard S, et al. Curr Opin Investig Drugs. 2003 Mar;4(3):303-8. Curr Opin Investig Drugs. 2003. PMID: 12735231 Review.
Cited by
- KCNQ1 suppression-replacement gene therapy in transgenic rabbits with type 1 long QT syndrome.
Bains S, Giammarino L, Nimani S, Alerni N, Tester DJ, Kim CSJ, Christoforou N, Louradour J, Horváth A, Beslac O, Barbieri M, Matas L, Hof TS, Lopez R, Perez-Feliz S, Parodi C, Garcia Casalta LG, Jurgensen J, Barry MA, Bego M, Keyes L, Owens J, Pinkstaff J, Koren G, Zehender M, Brunner M, Casoni D, Praz F, Haeberlin A, Brooks G, Ackerman MJ, Odening KE. Bains S, et al. Eur Heart J. 2024 Sep 29;45(36):3751-3763. doi: 10.1093/eurheartj/ehae476. Eur Heart J. 2024. PMID: 39115049 Free PMC article. - Induced pluripotent stem cell-based models: Are we ready for that heart in a dish?
Bissoli I, D'Adamo S, Pignatti C, Agnetti G, Flamigni F, Cetrullo S. Bissoli I, et al. Front Cell Dev Biol. 2023 Jan 19;11:1129263. doi: 10.3389/fcell.2023.1129263. eCollection 2023. Front Cell Dev Biol. 2023. PMID: 36743420 Free PMC article. No abstract available. - Mouse models of arrhythmogenic cardiovascular disease: challenges and opportunities.
Nerbonne JM. Nerbonne JM. Curr Opin Pharmacol. 2014 Apr;15:107-14. doi: 10.1016/j.coph.2014.02.003. Epub 2014 Mar 13. Curr Opin Pharmacol. 2014. PMID: 24632325 Free PMC article. Review. - Murine Electrophysiological Models of Cardiac Arrhythmogenesis.
Huang CL. Huang CL. Physiol Rev. 2017 Jan;97(1):283-409. doi: 10.1152/physrev.00007.2016. Physiol Rev. 2017. PMID: 27974512 Free PMC article. Review. - Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come?
Sala L, Bellin M, Mummery CL. Sala L, et al. Br J Pharmacol. 2017 Nov;174(21):3749-3765. doi: 10.1111/bph.13577. Epub 2016 Sep 20. Br J Pharmacol. 2017. PMID: 27641943 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous