Asbestos-derived reactive oxygen species activate TGF-beta1 - PubMed (original) (raw)

. 2004 Aug;84(8):1013-23.

doi: 10.1038/labinvest.3700109.

Affiliations

Free article

Asbestos-derived reactive oxygen species activate TGF-beta1

Derek A Pociask et al. Lab Invest. 2004 Aug.

Free article

Abstract

Transforming growth factor-beta1 (TGF-beta1) is a potent peptide that inhibits epithelial and mesenchymal cell proliferation and stimulates the synthesis of extracellular matrix components. This cytokine is produced in a biologically latent complex bound to a latent-associated peptide (LAP), and it is the disassociation of this complex that regulates TGF-beta activity. A number of mechanisms have been shown to activate TGF-beta1. We show here that reactive oxygen species (ROS), generated by the iron in chrysotile or crocidolite asbestos, mediate the biological activity of TGF-beta1. Recombinant human latent TGF-beta1 was activated in a cell free system in the presence of asbestos and ascorbic acid. Latent TGF-beta1 was overexpressed in both A549 and mink lung epithelial cell lines through an adenovirus vector containing the full-length construct for porcine TGF-beta1. This latent TGF-beta1 was activated in a concentration-dependant fashion by introducing asbestos into the cell cultures. This activation was reduced significantly through the use of superoxide dismutase, catalase or deferoxamine. Amino-acid constituents of the LAP were oxidized as demonstrated by the appearance of carbonyls detected by Western analysis. The oxidized LAP could no longer form a complex with TGF-beta1. Our data support the postulate that ROS derived from asbestos provide a mechanism for activating TGF-beta1 in the alveolar environment by oxidizing amino acids in LAP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources