Stability-based validation of clustering solutions - PubMed (original) (raw)
Comparative Study
. 2004 Jun;16(6):1299-323.
doi: 10.1162/089976604773717621.
Affiliations
- PMID: 15130251
- DOI: 10.1162/089976604773717621
Comparative Study
Stability-based validation of clustering solutions
Tilman Lange et al. Neural Comput. 2004 Jun.
Abstract
Data clustering describes a set of frequently employed techniques in exploratory data analysis to extract "natural" group structure in data. Such groupings need to be validated to separate the signal in the data from spurious structure. In this context, finding an appropriate number of clusters is a particularly important model selection question. We introduce a measure of cluster stability to assess the validity of a cluster model. This stability measure quantifies the reproducibility of clustering solutions on a second sample, and it can be interpreted as a classification risk with regard to class labels produced by a clustering algorithm. The preferred number of clusters is determined by minimizing this classification risk as a function of the number of clusters. Convincing results are achieved on simulated as well as gene expression data sets. Comparisons to other methods demonstrate the competitive performance of our method and its suitability as a general validation tool for clustering solutions in real-world problems.
Similar articles
- Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach.
Pihur V, Datta S, Datta S. Pihur V, et al. Bioinformatics. 2007 Jul 1;23(13):1607-15. doi: 10.1093/bioinformatics/btm158. Epub 2007 May 5. Bioinformatics. 2007. PMID: 17483500 - Clustering of change patterns using Fourier coefficients.
Kim J, Kim H. Kim J, et al. Bioinformatics. 2008 Jan 15;24(2):184-91. doi: 10.1093/bioinformatics/btm568. Epub 2007 Nov 19. Bioinformatics. 2008. PMID: 18025003 - Graph-based consensus clustering for class discovery from gene expression data.
Yu Z, Wong HS, Wang H. Yu Z, et al. Bioinformatics. 2007 Nov 1;23(21):2888-96. doi: 10.1093/bioinformatics/btm463. Epub 2007 Sep 14. Bioinformatics. 2007. PMID: 17872912 - Comparing algorithms for clustering of expression data: how to assess gene clusters.
Yona G, Dirks W, Rahman S. Yona G, et al. Methods Mol Biol. 2009;541:479-509. doi: 10.1007/978-1-59745-243-4_21. Methods Mol Biol. 2009. PMID: 19381534 Review. - Gene expression profiling--Clusters of possibilities.
Bergkvist A, Rusnakova V, Sindelka R, Garda JM, Sjögreen B, Lindh D, Forootan A, Kubista M. Bergkvist A, et al. Methods. 2010 Apr;50(4):323-35. doi: 10.1016/j.ymeth.2010.01.009. Epub 2010 Jan 15. Methods. 2010. PMID: 20079843 Review.
Cited by
- Current Approaches in Computational Psychiatry for the Data-Driven Identification of Brain-Based Subtypes.
Brucar LR, Feczko E, Fair DA, Zilverstand A. Brucar LR, et al. Biol Psychiatry. 2023 Apr 15;93(8):704-716. doi: 10.1016/j.biopsych.2022.12.020. Epub 2022 Dec 30. Biol Psychiatry. 2023. PMID: 36841702 Free PMC article. Review. - Persistent somatic symptoms are key to individual illness perception at one year after COVID-19 in a cross-sectional analysis of a prospective cohort study.
Hüfner K, Tymoszuk P, Sahanic S, Luger A, Boehm A, Pizzini A, Schwabl C, Koppelstätter S, Kurz K, Asshoff M, Mosheimer-Feistritzer B, Pfeifer B, Rass V, Schroll A, Iglseder S, Egger A, Wöll E, Weiss G, Helbok R, Widmann G, Sonnweber T, Tancevski I, Sperner-Unterweger B, Löffler-Ragg J. Hüfner K, et al. J Psychosom Res. 2023 Jun;169:111234. doi: 10.1016/j.jpsychores.2023.111234. Epub 2023 Mar 17. J Psychosom Res. 2023. PMID: 36965396 Free PMC article. - Missing value imputation improves clustering and interpretation of gene expression microarray data.
Tuikkala J, Elo LL, Nevalainen OS, Aittokallio T. Tuikkala J, et al. BMC Bioinformatics. 2008 Apr 18;9:202. doi: 10.1186/1471-2105-9-202. BMC Bioinformatics. 2008. PMID: 18423022 Free PMC article. - The use of clustering algorithms in critical care research to unravel patient heterogeneity.
Castela Forte J, Perner A, van der Horst ICC. Castela Forte J, et al. Intensive Care Med. 2019 Jul;45(7):1025-1028. doi: 10.1007/s00134-019-05631-z. Epub 2019 May 6. Intensive Care Med. 2019. PMID: 31062051 No abstract available. - GraSP: geodesic Graph-based Segmentation with Shape Priors for the functional parcellation of the cortex.
Honnorat N, Eavani H, Satterthwaite TD, Gur RE, Gur RC, Davatzikos C. Honnorat N, et al. Neuroimage. 2015 Feb 1;106:207-21. doi: 10.1016/j.neuroimage.2014.11.008. Epub 2014 Nov 11. Neuroimage. 2015. PMID: 25462796 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources