Prevalence and characterization of a binary toxin (actin-specific ADP-ribosyltransferase) from Clostridium difficile - PubMed (original) (raw)
Prevalence and characterization of a binary toxin (actin-specific ADP-ribosyltransferase) from Clostridium difficile
Carina Gonçalves et al. J Clin Microbiol. 2004 May.
Abstract
In addition to the two large clostridial cytotoxins (TcdA and TcdB), some strains of Clostridium difficile also produce an actin-specific ADP-ribosyltransferase, called binary toxin CDT. We used a PCR method and Southern blotting for the detection of genes encoding the enzymatic (CDTa) and binding (CDTb) components of the binary toxin in 369 strains isolated from patients with suspected C. difficile-associated diarrhea or colitis. Twenty-two strains (a prevalence of 6%) harbored both genes. When binary toxin production was assessed by Western blotting, 19 of the 22 strains reacted with antisera against the iota toxin of C. perfringens (anti-Ia and anti-Ib). Additionally, binary toxin activity, detected by the ADP-ribosyltransferase assay, was present in only 17 of the 22 strains. Subsequently, all 22 binary toxin-positive strains were tested for the production of toxins TcdA and TcdB, toxinotyped, and characterized by serogrouping, PCR ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis. All binary toxin-positive strains also produced TcdB and/or TcdA. However, they had significant changes in the tcdA and tcdB genes and belonged to variant toxinotypes III, IV, V, VII, IX, and XIII. We could differentiate 16 profiles by using typing methods, indicating that most of the binary toxin-positive strains were unrelated.
Figures
FIG. 1.
Detection of CDTa (94 kDa) and CDTb (48 kDa) components by Western blotting using antisera against Ia and Ib from C. perfringens. Lanes: PM, Rainbow molecular marker RPN 800 (Amersham Biosciences); 1, strain 22270; 2, strain 37078.
FIG. 2.
ADP-ribosyltransferase assay using a thymidine-containing brain extract as a source of actin. Lanes: 1, strain 8549 (negative control); 2, strain CD196 (positive control); 3, strain 13376; 4, strain 17153; 5, 11419; 6, strain 9459. The two bands visible on the figure represent the two isoforms of actin G.
FIG. 3.
Cytotoxic effect of TcdB on MRC-5 monolayers. (A) Negative control. (B) Reference strain ATCC 43596 (serogroup C). (C) Strain 37078.
Similar articles
- Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in feces of Calves in south west of Iran.
Doosti A, Mokhtari-Farsani A. Doosti A, et al. Ann Clin Microbiol Antimicrob. 2014 Jun 5;13:21. doi: 10.1186/1476-0711-13-21. Ann Clin Microbiol Antimicrob. 2014. PMID: 24903619 Free PMC article. - New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection.
Persson S, Torpdahl M, Olsen KE. Persson S, et al. Clin Microbiol Infect. 2008 Nov;14(11):1057-64. doi: 10.1111/j.1469-0691.2008.02092.x. Clin Microbiol Infect. 2008. PMID: 19040478 - Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile.
Stubbs S, Rupnik M, Gibert M, Brazier J, Duerden B, Popoff M. Stubbs S, et al. FEMS Microbiol Lett. 2000 May 15;186(2):307-12. doi: 10.1111/j.1574-6968.2000.tb09122.x. FEMS Microbiol Lett. 2000. PMID: 10802189 - Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance.
Gerding DN, Johnson S, Rupnik M, Aktories K. Gerding DN, et al. Gut Microbes. 2014 Jan-Feb;5(1):15-27. doi: 10.4161/gmic.26854. Epub 2013 Oct 31. Gut Microbes. 2014. PMID: 24253566 Free PMC article. Review. - The Importance of Therapeutically Targeting the Binary Toxin from Clostridioides difficile.
Abeyawardhane DL, Godoy-Ruiz R, Adipietro KA, Varney KM, Rustandi RR, Pozharski E, Weber DJ. Abeyawardhane DL, et al. Int J Mol Sci. 2021 Mar 13;22(6):2926. doi: 10.3390/ijms22062926. Int J Mol Sci. 2021. PMID: 33805767 Free PMC article. Review.
Cited by
- Global Landscape of Clostridioides Difficile Phylogeography, Antibiotic Susceptibility, and Toxin Polymorphisms by Post-Hoc Whole-Genome Sequencing from the MODIFY I/II Studies.
Zhao H, Nickle DC, Zeng Z, Law PYT, Wilcox MH, Chen L, Peng Y, Meng J, Deng Z, Albright A, Zhong H, Xu X, Zhu S, Shen J, Blanchard RL, Dorr MB, Shaw PM, Li J. Zhao H, et al. Infect Dis Ther. 2021 Jun;10(2):853-870. doi: 10.1007/s40121-021-00426-6. Epub 2021 Mar 22. Infect Dis Ther. 2021. PMID: 33751421 Free PMC article. - Evaluation of inpatients Clostridium difficile prevalence and risk factors in Cameroon.
Djuikoue IC, Tambo E, Tazemda G, Njajou O, Makoudjou D, Sokeng V, Wandji M, Tomi C, Nanfack A, Dayomo A, Lacmago S, Tassadjo F, Sipowo RT, Kakam C, Djoko AB, Assob CN, Andremont A, Barbut F. Djuikoue IC, et al. Infect Dis Poverty. 2020 Aug 31;9(1):122. doi: 10.1186/s40249-020-00738-8. Infect Dis Poverty. 2020. PMID: 32867842 Free PMC article. - Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator.
Carter GP, Lyras D, Allen DL, Mackin KE, Howarth PM, O'Connor JR, Rood JI. Carter GP, et al. J Bacteriol. 2007 Oct;189(20):7290-301. doi: 10.1128/JB.00731-07. Epub 2007 Aug 10. J Bacteriol. 2007. PMID: 17693517 Free PMC article. - Clostridium difficile: Investigating Transmission Patterns Between Infected and Colonized Patients Using Whole Genome Sequencing.
Kong LY, Eyre DW, Corbeil J, Raymond F, Walker AS, Wilcox MH, Crook DW, Michaud S, Toye B, Frost E, Dendukuri N, Schiller I, Bourgault AM, Dascal A, Oughton M, Longtin Y, Poirier L, Brassard P, Turgeon N, Gilca R, Loo VG. Kong LY, et al. Clin Infect Dis. 2019 Jan 7;68(2):204-209. doi: 10.1093/cid/ciy457. Clin Infect Dis. 2019. PMID: 29846557 Free PMC article. - Clonal spread of a Clostridium difficile strain with a complete set of toxin A, toxin B, and binary toxin genes among Polish patients with Clostridium difficile-associated diarrhea.
Pituch H, Kreft D, Obuch-Woszczatynski P, Wultańska D, Meisel-Mikołajczyk F, Łuczak M, van Belkum A. Pituch H, et al. J Clin Microbiol. 2005 Jan;43(1):472-5. doi: 10.1128/JCM.43.1.472-475.2005. J Clin Microbiol. 2005. PMID: 15635019 Free PMC article.
References
- Aktories, K., and A. Wegner. 1992. Mechanisms of the cytopathic action of actin-ADP-ribosylating toxins. Mol. Microbiol. 6:2905-2908. - PubMed
- Babudieri, S., S. P. Borrielo, A. Pantosti, I. Luzzi, G. P. Testore, and G. Panichi. 1986. Diarrhoea associated with toxigenic Clostridium spiroforme. J. Infect. 12:278-279. - PubMed
- Banno, Y., T. Kobayashi, H. Kono, K. Watanabe, K. Ueno, and Y. Nozawa. 1984. Biochemical characterization and biologic actions of two toxins (D-1 and D-2) from Clostridium difficile. Rev. Infect. Dis. 6:S11-S20. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources