Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements - PubMed (original) (raw)
Comparative Study
. 2004 May 13;42(3):375-86.
doi: 10.1016/s0896-6273(04)00249-1.
Affiliations
- PMID: 15134635
- DOI: 10.1016/s0896-6273(04)00249-1
Free article
Comparative Study
Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements
Guillermo M Lanuza et al. Neuron. 2004.
Free article
Abstract
The sequential stepping of left and right limbs is a fundamental motor behavior that underlies walking movements. This relatively simple locomotor behavior is generated by the rhythmic activity of motor neurons under the control of spinal neural networks known as central pattern generators (CPGs) that comprise multiple interneuron cell types. Little, however, is known about the identity and contribution of defined interneuronal populations to mammalian locomotor behaviors. We show a discrete subset of commissural spinal interneurons, whose fate is controlled by the activity of the homeobox gene Dbx1, has a critical role in controlling the left-right alternation of motor neurons innervating hindlimb muscles. Dbx1 mutant mice lacking these ventral interneurons exhibit an increased incidence of cobursting between left and right flexor/extensor motor neurons during drug-induced locomotion. Together, these findings identify Dbx1-dependent interneurons as key components of the spinal locomotor circuits that control stepping movements in mammals.
Similar articles
- Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord.
Crone SA, Quinlan KA, Zagoraiou L, Droho S, Restrepo CE, Lundfald L, Endo T, Setlak J, Jessell TM, Kiehn O, Sharma K. Crone SA, et al. Neuron. 2008 Oct 9;60(1):70-83. doi: 10.1016/j.neuron.2008.08.009. Neuron. 2008. PMID: 18940589 - _WT1_-Expressing Interneurons Regulate Left-Right Alternation during Mammalian Locomotor Activity.
Haque F, Rancic V, Zhang W, Clugston R, Ballanyi K, Gosgnach S. Haque F, et al. J Neurosci. 2018 Jun 20;38(25):5666-5676. doi: 10.1523/JNEUROSCI.0328-18.2018. Epub 2018 May 22. J Neurosci. 2018. PMID: 29789381 Free PMC article. - Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
Shevtsova NA, Rybak IA. Shevtsova NA, et al. J Physiol. 2016 Nov 1;594(21):6117-6131. doi: 10.1113/JP272437. Epub 2016 Jul 21. J Physiol. 2016. PMID: 27292055 Free PMC article. - The role of genetically-defined interneurons in generating the mammalian locomotor rhythm.
Gosgnach S. Gosgnach S. Integr Comp Biol. 2011 Dec;51(6):903-12. doi: 10.1093/icb/icr022. Epub 2011 May 15. Integr Comp Biol. 2011. PMID: 21576118 Review. - Locomotor circuits in the mammalian spinal cord.
Kiehn O. Kiehn O. Annu Rev Neurosci. 2006;29:279-306. doi: 10.1146/annurev.neuro.29.051605.112910. Annu Rev Neurosci. 2006. PMID: 16776587 Review.
Cited by
- Central pattern generator control of a vertebrate ultradian sleep rhythm.
Fenk LA, Riquelme JL, Laurent G. Fenk LA, et al. Nature. 2024 Dec;636(8043):681-689. doi: 10.1038/s41586-024-08162-w. Epub 2024 Nov 6. Nature. 2024. PMID: 39506115 Free PMC article. - Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis.
Brownstone RM, Wilson JM. Brownstone RM, et al. Brain Res Rev. 2008 Jan;57(1):64-76. doi: 10.1016/j.brainresrev.2007.06.025. Epub 2007 Aug 14. Brain Res Rev. 2008. PMID: 17905441 Free PMC article. Review. - Netrin-1-dependent spinal interneuron subtypes are required for the formation of left-right alternating locomotor circuitry.
Rabe N, Gezelius H, Vallstedt A, Memic F, Kullander K. Rabe N, et al. J Neurosci. 2009 Dec 16;29(50):15642-9. doi: 10.1523/JNEUROSCI.5096-09.2009. J Neurosci. 2009. PMID: 20016078 Free PMC article. - Mapping Connectivity Amongst Interneuronal Components of the Locomotor CPG.
Haque F, Gosgnach S. Haque F, et al. Front Cell Neurosci. 2019 Oct 4;13:443. doi: 10.3389/fncel.2019.00443. eCollection 2019. Front Cell Neurosci. 2019. PMID: 31636541 Free PMC article. - Modular organization of locomotor networks in people with severe spinal cord injury.
Sun SY, Giszter SF, Harkema SJ, Angeli CA. Sun SY, et al. Front Neurosci. 2022 Dec 7;16:1041015. doi: 10.3389/fnins.2022.1041015. eCollection 2022. Front Neurosci. 2022. PMID: 36570830 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials