Promoting angiogenesis protects severely hypertrophied hearts from ischemic injury - PubMed (original) (raw)
Promoting angiogenesis protects severely hypertrophied hearts from ischemic injury
Ingeborg Friehs et al. Ann Thorac Surg. 2004 Jun.
Abstract
Background: Myocardial hypertrophy is associated with progressive contractile dysfunction, increased vulnerability to ischemia-reperfusion injury, and is, therefore, a risk factor in cardiac surgery. During the progression of hypertrophy, a mismatch develops between the number of capillaries and cardiomyocytes per unit area, suggesting an increase in diffusion distance and the potential for limited supply of oxygen and nutrients. We hypothesized that promoting angiogenesis in hypertrophied hearts increases microvascular density, thereby improves tissue perfusion and substrate availability, maintains myocardial function, and improves postischemic recovery.
Methods: Left ventricular hypertrophy was created in 10-day-old rabbits by aortic banding and progression was monitored by echocardiography. At 4 weeks (compensated hypertrophy), 2 microg of vascular endothelial growth factor (VEGF) or placebo was administered intrapericardially. After 2 weeks, microvascular density, coronary flow (CF), and glucose uptake (GU) were measured. Tolerance to ischemia was determined by cardiac function measurements before and after ischemia-reperfusion using an isolated heart preparation.
Results: Microvascular density increased significantly following VEGF treatment (1.43 +/- 0.08/nuclei/field vs 1.04 +/- 0.06/nuclei/field untreated hypertrophy). Concomitantly, there was an increase in CF (7 +/- 0.5 vs 5 +/- 0.4 mL/min/g) and GU (1.24 +/- 0.2 vs 0.69 +/- 0.2 micromoles/g/30 minutes; p <or= 0.05). In vivo contractile function (-0.08 +/- 0.48 vs -1.39 +/- 0.35 untreated hypertrophy; p <or= 0.05) and postischemic myocardial recovery (% recovery: 93 +/- 2.0 vs 73 +/- 6.8 untreated hypertrophy; p <or= 0.05) were significantly improved in VEGF-treated hearts compared to untreated hypertrophied hearts.
Conclusions: Treatment of hypertrophied hearts with VEGF resulted in an increase of microvascular density, improved tissue perfusion, and glucose delivery. Promoting angiogenesis proved useful in preserving myocardial function in late hypertrophy and improving postischemic recovery of contractile function.
Similar articles
- Vascular endothelial growth factor delays onset of failure in pressure-overload hypertrophy through matrix metalloproteinase activation and angiogenesis.
Friehs I, Margossian RE, Moran AM, Cao-Danh H, Moses MA, del Nido PJ. Friehs I, et al. Basic Res Cardiol. 2006 May;101(3):204-13. doi: 10.1007/s00395-005-0581-0. Epub 2005 Dec 23. Basic Res Cardiol. 2006. PMID: 16369727 Free PMC article. - Vascular endothelial growth factor prevents apoptosis and preserves contractile function in hypertrophied infant heart.
Friehs I, Barillas R, Vasilyev NV, Roy N, McGowan FX, del Nido PJ. Friehs I, et al. Circulation. 2006 Jul 4;114(1 Suppl):I290-5. doi: 10.1161/CIRCULATIONAHA.105.001289. Circulation. 2006. PMID: 16820588 Free PMC article. - Captopril cardioplegia on myocardial protection in the hypertrophied rat hearts.
Zhang YH, Xu SC. Zhang YH, et al. Int J Cardiol. 1994 Dec;47(2):131-7. doi: 10.1016/0167-5273(94)90179-1. Int J Cardiol. 1994. PMID: 7721480 - Increased susceptibility of hypertrophied hearts to ischemic injury.
Friehs I, del Nido PJ. Friehs I, et al. Ann Thorac Surg. 2003 Feb;75(2):S678-84. doi: 10.1016/s0003-4975(02)04692-1. Ann Thorac Surg. 2003. PMID: 12607712 Review. - Energy metabolism in the hypertrophied heart.
Sambandam N, Lopaschuk GD, Brownsey RW, Allard MF. Sambandam N, et al. Heart Fail Rev. 2002 Apr;7(2):161-73. doi: 10.1023/a:1015380609464. Heart Fail Rev. 2002. PMID: 11988640 Review.
Cited by
- Hypertrophic reprogramming of the left ventricle: translation to the ECG.
Hill JA. Hill JA. J Electrocardiol. 2012 Nov-Dec;45(6):624-9. doi: 10.1016/j.jelectrocard.2012.08.003. Epub 2012 Sep 19. J Electrocardiol. 2012. PMID: 22999493 Free PMC article. Review. - Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload.
Schiattarella GG, Hill JA. Schiattarella GG, et al. Circulation. 2015 Apr 21;131(16):1435-47. doi: 10.1161/CIRCULATIONAHA.115.013894. Circulation. 2015. PMID: 25901069 Free PMC article. Review. No abstract available. - Electron transport chain dysfunction in neonatal pressure-overload hypertrophy precedes cardiomyocyte apoptosis independent of oxidative stress.
Griffiths ER, Friehs I, Scherr E, Poutias D, McGowan FX, Del Nido PJ. Griffiths ER, et al. J Thorac Cardiovasc Surg. 2010 Jun;139(6):1609-17. doi: 10.1016/j.jtcvs.2009.08.060. Epub 2009 Dec 28. J Thorac Cardiovasc Surg. 2010. PMID: 20038480 Free PMC article. - Myocardial hypertrophy overrides the angiogenic response to hypoxia.
Choi YH, Cowan DB, Nathan M, Poutias D, Stamm C, del Nido PJ, McGowan FX Jr. Choi YH, et al. PLoS One. 2008;3(12):e4042. doi: 10.1371/journal.pone.0004042. Epub 2008 Dec 29. PLoS One. 2008. PMID: 19112498 Free PMC article. - Acute effects of remote ischemic preconditioning on cutaneous microcirculation--a controlled prospective cohort study.
Kraemer R, Lorenzen J, Kabbani M, Herold C, Busche M, Vogt PM, Knobloch K. Kraemer R, et al. BMC Surg. 2011 Nov 23;11:32. doi: 10.1186/1471-2482-11-32. BMC Surg. 2011. PMID: 22111972 Free PMC article. Clinical Trial.
Publication types
MeSH terms
Substances
Grants and funding
- R01 HL068915/HL/NHLBI NIH HHS/United States
- R01 HL068915-04/HL/NHLBI NIH HHS/United States
- HL-063095/HL/NHLBI NIH HHS/United States
- HL 052589/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources