Modelling blood-brain barrier partitioning using Bayesian neural nets - PubMed (original) (raw)
Modelling blood-brain barrier partitioning using Bayesian neural nets
David A Winkler et al. J Mol Graph Model. 2004 Jul.
Abstract
We have employed three families of molecular molecular descriptors, together with Bayesian regularized neural nets, to model the partitioning of a diverse range of drugs and other small molecules across the blood-brain barrier (BBB). The relative efficacy of each descriptors class is compared, and the advantages of flexible, parsimonious, model free mapping methods, like Bayesian neural nets, illustrated. The relative importance of the molecular descriptors for the most predictive BBB model were determined by use of automatic relevance determination (ARD), and compared with the important descriptors from other literature models of BBB partitioning.
Similar articles
- Predicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemes.
Zhao YH, Abraham MH, Ibrahim A, Fish PV, Cole S, Lewis ML, de Groot MJ, Reynolds DP. Zhao YH, et al. J Chem Inf Model. 2007 Jan-Feb;47(1):170-5. doi: 10.1021/ci600312d. J Chem Inf Model. 2007. PMID: 17238262 - Investigating the utility of momentum-space descriptors for predicting blood-brain barrier penetration.
Al-Fahemi JH, Cooper DL, Allan NL. Al-Fahemi JH, et al. J Mol Graph Model. 2007 Oct;26(3):607-12. doi: 10.1016/j.jmgm.2007.01.002. Epub 2007 Jan 14. J Mol Graph Model. 2007. PMID: 17300970 - In silico ADME modelling: prediction models for blood-brain barrier permeation using a systematic variable selection method.
Narayanan R, Gunturi SB. Narayanan R, et al. Bioorg Med Chem. 2005 Apr 15;13(8):3017-28. doi: 10.1016/j.bmc.2005.01.061. Bioorg Med Chem. 2005. PMID: 15781411 - Blood-brain barrier genomics and the use of endogenous transporters to cause drug penetration into the brain.
Pardridge WM. Pardridge WM. Curr Opin Drug Discov Devel. 2003 Sep;6(5):683-91. Curr Opin Drug Discov Devel. 2003. PMID: 14579518 Review. - Current in vitro and in silico models of blood-brain barrier penetration: a practical view.
Vastag M, Keseru GM. Vastag M, et al. Curr Opin Drug Discov Devel. 2009 Jan;12(1):115-24. Curr Opin Drug Discov Devel. 2009. PMID: 19152220 Review.
Cited by
- An in silico approach for screening flavonoids as P-glycoprotein inhibitors based on a Bayesian-regularized neural network.
Wang YH, Li Y, Yang SL, Yang L. Wang YH, et al. J Comput Aided Mol Des. 2005 Mar;19(3):137-47. doi: 10.1007/s10822-005-3321-5. J Comput Aided Mol Des. 2005. PMID: 16059668 - QSAR modeling of the blood-brain barrier permeability for diverse organic compounds.
Zhang L, Zhu H, Oprea TI, Golbraikh A, Tropsha A. Zhang L, et al. Pharm Res. 2008 Aug;25(8):1902-14. doi: 10.1007/s11095-008-9609-0. Epub 2008 Jun 14. Pharm Res. 2008. PMID: 18553217 - Automatic QSAR modeling of ADME properties: blood-brain barrier penetration and aqueous solubility.
Obrezanova O, Gola JM, Champness EJ, Segall MD. Obrezanova O, et al. J Comput Aided Mol Des. 2008 Jun-Jul;22(6-7):431-40. doi: 10.1007/s10822-008-9193-8. Epub 2008 Feb 14. J Comput Aided Mol Des. 2008. PMID: 18273554 - Development of QSAR models to predict blood-brain barrier permeability.
Faramarzi S, Kim MT, Volpe DA, Cross KP, Chakravarti S, Stavitskaya L. Faramarzi S, et al. Front Pharmacol. 2022 Oct 20;13:1040838. doi: 10.3389/fphar.2022.1040838. eCollection 2022. Front Pharmacol. 2022. PMID: 36339562 Free PMC article. - Combined Micellar Liquid Chromatography Technique and QSARs Modeling in Predicting the Blood-Brain Barrier Permeation of Heterocyclic Drug-like Compounds.
Janicka M, Śliwińska A, Sztanke M, Sztanke K. Janicka M, et al. Int J Mol Sci. 2022 Dec 14;23(24):15887. doi: 10.3390/ijms232415887. Int J Mol Sci. 2022. PMID: 36555527 Free PMC article.