SARS corona virus peptides recognized by antibodies in the sera of convalescent cases - PubMed (original) (raw)
SARS corona virus peptides recognized by antibodies in the sera of convalescent cases
Jian-Ping Guo et al. Virology. 2004.
Abstract
We synthesized on cellulose membranes 4942 ten-amino-acid peptides which included all of the sequences predicted for the severe acute respiratory syndrome (SARS) corona virus. We probed these membranes with four pairs of acute and convalescent sera from recovered SARS cases. We correlated positively reacting peptides with the in vitro SARS-CoV neutralizing activity of the samples. We found that convalescent sera with high neutralizing activity recognized exclusively only a limited number of peptides on the membranes. This suggests that antibodies against the epitopes represented by these peptides could be responsible for much of the SARS-CoV neutralizing activity. The findings have implications for monitoring humoral responses to SARS-CoV as well as for developing a successful SARS vaccine.
Figures
Fig. 1
(a) Outline of the overlapping peptide set covering membranes M1, M2, M3, and M4. Panels on the membranes are designated from left to right P1, P2, P3, and P4. Numbers in the boxes designate the location of each open reading frame. The note to the right of M4P1 shows the key to the Orfs with peptide totals in brackets. This membrane was spotted with dye instead of amino acids. In actual membranes, each spot is a 10-amino-acid peptide with adjacent spots being shifted by two amino acids. Characterization of the immune response against these single case epitopes promises to provide important insights into their role in the resolution of infection. However, epitopes recognized by multiple convalescent sera may be the most important targets of neutralizing antibodies. (b–d) Examples of membrane panels probed with various serum samples and developed with peroxidase-labeled goat antihuman IgA; (b) M1P2 probed with control serum, acute as well as convalescent serum from case 2, convalescent serum from case 1, and serum from the deceased case. Notice the triad of spots recognized only in the serum of the two convalescent cases. The peptide sequences from Orf 1a are SDDYIKLNGP, DYIKLNGPLT, and IKLNGPLTVG. (c) P3M2 probed with acute and chronic serum from case 2 and serum from the deceased case. Panel 3 has peptides from S-protein. Notice the triad of spots recognized only by the convalescent serum. The peptide sequences from S-protein are FQPFQQFGRD, PFQQFGRDVS, and QQFGRDVSDF. (d) P4M3 probed with acute and convalescent serum from case 2 and convalescent serum from case 1. Notice the triad of spots recognized in the two convalescent sera. The peptide sequences from N-protein are QLPQGTTLPK, PQGTTLPKGF, and GTTLPKGFYA.
Fig. 2
(a) Vero E6 cells were imaged before infection and (b) 32 h after infection with SARS-CoV at a multiplicity of 1 pfu per cell. Notice the extensive cell damage in b.
Similar articles
- Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies.
Zhang H, Wang G, Li J, Nie Y, Shi X, Lian G, Wang W, Yin X, Zhao Y, Qu X, Ding M, Deng H. Zhang H, et al. J Virol. 2004 Jul;78(13):6938-45. doi: 10.1128/JVI.78.13.6938-6945.2004. J Virol. 2004. PMID: 15194770 Free PMC article. - Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine.
Pang H, Liu Y, Han X, Xu Y, Jiang F, Wu D, Kong X, Bartlam M, Rao Z. Pang H, et al. J Gen Virol. 2004 Oct;85(Pt 10):3109-3113. doi: 10.1099/vir.0.80111-0. J Gen Virol. 2004. PMID: 15448374 - A serological survey on neutralizing antibody titer of SARS convalescent sera.
Zhang JS, Chen JT, Liu YX, Zhang ZS, Gao H, Liu Y, Wang X, Ning Y, Liu YF, Gao Q, Xu JG, Qin C, Dong XP, Yin WD. Zhang JS, et al. J Med Virol. 2005 Oct;77(2):147-50. doi: 10.1002/jmv.20431. J Med Virol. 2005. PMID: 16121363 Free PMC article. - Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines.
He Y, Zhu Q, Liu S, Zhou Y, Yang B, Li J, Jiang S. He Y, et al. Virology. 2005 Mar 30;334(1):74-82. doi: 10.1016/j.virol.2005.01.034. Virology. 2005. PMID: 15749124 Free PMC article. - Molecular mechanisms of severe acute respiratory syndrome (SARS).
Groneberg DA, Hilgenfeld R, Zabel P. Groneberg DA, et al. Respir Res. 2005 Jan 20;6(1):8. doi: 10.1186/1465-9921-6-8. Respir Res. 2005. PMID: 15661082 Free PMC article. Review.
Cited by
- COVID-19: An Overview of SARS-CoV-2 Variants-The Current Vaccines and Drug Development.
Bostanghadiri N, Ziaeefar P, Mofrad MG, Yousefzadeh P, Hashemi A, Darban-Sarokhalil D. Bostanghadiri N, et al. Biomed Res Int. 2023 Aug 29;2023:1879554. doi: 10.1155/2023/1879554. eCollection 2023. Biomed Res Int. 2023. PMID: 37674935 Free PMC article. Review. - Immunogenicity and efficacy of a novel multi-patch SARS-CoV-2/COVID-19 vaccine candidate.
Perdiguero B, Marcos-Villar L, López-Bravo M, Sánchez-Cordón PJ, Zamora C, Valverde JR, Sorzano CÓS, Sin L, Álvarez E, Ramos M, Del Val M, Esteban M, Gómez CE. Perdiguero B, et al. Front Immunol. 2023 Jun 19;14:1160065. doi: 10.3389/fimmu.2023.1160065. eCollection 2023. Front Immunol. 2023. PMID: 37404819 Free PMC article. - SARS-CoV-2 accessory protein 7b forms homotetramers in detergent.
Surya W, Queralt-Martin M, Mu Y, Aguilella VM, Torres J. Surya W, et al. Virol J. 2022 Nov 21;19(1):193. doi: 10.1186/s12985-022-01920-0. Virol J. 2022. PMID: 36414943 Free PMC article. - Roles and functions of SARS-CoV-2 proteins in host immune evasion.
Rashid F, Xie Z, Suleman M, Shah A, Khan S, Luo S. Rashid F, et al. Front Immunol. 2022 Aug 8;13:940756. doi: 10.3389/fimmu.2022.940756. eCollection 2022. Front Immunol. 2022. PMID: 36003396 Free PMC article. Review. - Development of a Multiepitope Vaccine Against SARS-CoV-2: Immunoinformatics Study.
Ghafouri F, Ahangari Cohan R, Samimi H, Hosseini Rad S M A, Naderi M, Noorbakhsh F, Haghpanah V. Ghafouri F, et al. JMIR Bioinform Biotechnol. 2022 Jul 19;3(1):e36100. doi: 10.2196/36100. eCollection 2022 Jan-Dec. JMIR Bioinform Biotechnol. 2022. PMID: 35891920 Free PMC article.
References
- Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S., Khattra J., Asano J.K., Barber S.A., Chan S.Y., Cloutier A., Coughlin S.M., Freeman D., Girn N., Griffith O.L., Leach S.R., Mayo M., McDonald H., Montgomery S.B., Pandoh P.K., Petrescu A.S., Robertson A.G., Schein J.E., Siddiqui A., Smailus D.E., Stott J.M., Yang G.S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T.F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G.A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R.C., Krajden M., Petric M., Skowronski D.M., Upton C., Roper R.L. The genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–1404. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous