SDPpred: a tool for prediction of amino acid residues that determine differences in functional specificity of homologous proteins - PubMed (original) (raw)
. 2004 Jul 1;32(Web Server issue):W424-8.
doi: 10.1093/nar/gkh391.
Affiliations
- PMID: 15215423
- PMCID: PMC441529
- DOI: 10.1093/nar/gkh391
SDPpred: a tool for prediction of amino acid residues that determine differences in functional specificity of homologous proteins
Olga V Kalinina et al. Nucleic Acids Res. 2004.
Abstract
SDPpred (Specificity Determining Position prediction) is a tool for prediction of residues in protein sequences that determine the proteins' functional specificity. It is designed for analysis of protein families whose members have biochemically similar but not identical interaction partners (e.g. different substrates for a family of transporters). SDPpred predicts residues that could be responsible for the proteins' choice of their correct interaction partners. The input of SDPpred is a multiple alignment of a protein family divided into a number of specificity groups, within which the interaction partner is believed to be the same. SDPpred does not require information about the secondary or three-dimensional structure of proteins. It produces a set of the alignment positions (specificity determining positions) that determine differences in functional specificity. SDPpred is available at http://math.genebee.msu.ru/\~psn/.
Figures
Figure 1
Residues making ‘structural clasps’ in the structure of the tetramer of the GlpF of Escherichia coli (1fx8, biological subunit). SDPs lying on the surface of contact between subunits are shown by white spheres.
Figure 2
A typical SDPpred query.
Figure 3
SDPpred output: (A) alignment of the query protein family with SDPs highlighted; (B) detailed description of the SDPs; (C) probability plot.
Similar articles
- Prediction of functional specificity determinants from protein sequences using log-likelihood ratios.
Pei J, Cai W, Kinch LN, Grishin NV. Pei J, et al. Bioinformatics. 2006 Jan 15;22(2):164-71. doi: 10.1093/bioinformatics/bti766. Epub 2005 Nov 8. Bioinformatics. 2006. PMID: 16278237 - [Computational method for prediction of protein functional sites using specificity determinants].
Kalinina OV, Rassel RB, Rakhmaninova AB, Gel'fand MS. Kalinina OV, et al. Mol Biol (Mosk). 2007 Jan-Feb;41(1):151-62. Mol Biol (Mosk). 2007. PMID: 17380902 Russian. - PROMALS: towards accurate multiple sequence alignments of distantly related proteins.
Pei J, Grishin NV. Pei J, et al. Bioinformatics. 2007 Apr 1;23(7):802-8. doi: 10.1093/bioinformatics/btm017. Epub 2007 Jan 31. Bioinformatics. 2007. PMID: 17267437 - Practical analysis of specificity-determining residues in protein families.
Chagoyen M, García-Martín JA, Pazos F. Chagoyen M, et al. Brief Bioinform. 2016 Mar;17(2):255-61. doi: 10.1093/bib/bbv045. Epub 2015 Jul 2. Brief Bioinform. 2016. PMID: 26141829 Review. - A survey on prediction of specificity-determining sites in proteins.
Chakraborty A, Chakrabarti S. Chakraborty A, et al. Brief Bioinform. 2015 Jan;16(1):71-88. doi: 10.1093/bib/bbt092. Epub 2014 Jan 10. Brief Bioinform. 2015. PMID: 24413183 Review.
Cited by
- Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses.
Tungtur S, Meinhardt S, Swint-Kruse L. Tungtur S, et al. J Mol Biol. 2010 Jan 29;395(4):785-802. doi: 10.1016/j.jmb.2009.10.001. Epub 2009 Oct 8. J Mol Biol. 2010. PMID: 19818797 Free PMC article. - WebProAnalyst: an interactive tool for analysis of quantitative structure-activity relationships in protein families.
Ivanisenko VA, Eroshkin AM, Kolchanov NA. Ivanisenko VA, et al. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W99-104. doi: 10.1093/nar/gki421. Nucleic Acids Res. 2005. PMID: 15980590 Free PMC article. - Determinants, discriminants, conserved residues--a heuristic approach to detection of functional divergence in protein families.
Bharatham K, Zhang ZH, Mihalek I. Bharatham K, et al. PLoS One. 2011;6(9):e24382. doi: 10.1371/journal.pone.0024382. Epub 2011 Sep 12. PLoS One. 2011. PMID: 21931701 Free PMC article. - Chimeric Structure of Plant Malic Enzyme Family: Different Evolutionary Scenarios for NAD- and NADP-Dependent Isoforms.
Tronconi MA, Andreo CS, Drincovich MF. Tronconi MA, et al. Front Plant Sci. 2018 May 11;9:565. doi: 10.3389/fpls.2018.00565. eCollection 2018. Front Plant Sci. 2018. PMID: 29868045 Free PMC article. - MAGA: A Supervised Method to Detect Motifs From Annotated Groups in Alignments.
Mier P, Andrade-Navarro MA. Mier P, et al. Evol Bioinform Online. 2020 Apr 29;16:1176934320916199. doi: 10.1177/1176934320916199. eCollection 2020. Evol Bioinform Online. 2020. PMID: 32425492 Free PMC article.
References
- Lichtarge O., Bourne,H,R. and Cohen,F,E. (1996) An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol., 257, 342–358. - PubMed
- Livingstone C. and Barton,G. (1993). Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput. Appl. Biosci., 9, 745–756. - PubMed
- Casari G., Sander,C. and Valencia,A. (1995). A method to predict functional residues in proteins. Nat. Struct. Biol., 2, 171–178. - PubMed
- Gaucher E.A., Gu,X., Miyamoto,M.M. and Benner,S.A. (2002). Predicting functional divergence in protein evolution by site-specific rate shifts. Trends Biochem. Sci., 27, 315–321. - PubMed