Plasticity of the spinal neural circuitry after injury - PubMed (original) (raw)
Review
Plasticity of the spinal neural circuitry after injury
V Reggie Edgerton et al. Annu Rev Neurosci. 2004.
Abstract
Motor function is severely disrupted following spinal cord injury (SCI). The spinal circuitry, however, exhibits a great degree of automaticity and plasticity after an injury. Automaticity implies that the spinal circuits have some capacity to perform complex motor tasks following the disruption of supraspinal input, and evidence for plasticity suggests that biochemical changes at the cellular level in the spinal cord can be induced in an activity-dependent manner that correlates with sensorimotor recovery. These characteristics should be strongly considered as advantageous in developing therapeutic strategies to assist in the recovery of locomotor function following SCI. Rehabilitative efforts combining locomotor training pharmacological means and/or spinal cord electrical stimulation paradigms will most likely result in more effective methods of recovery than using only one intervention.
Similar articles
- Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury.
Roy RR, Harkema SJ, Edgerton VR. Roy RR, et al. Arch Phys Med Rehabil. 2012 Sep;93(9):1487-97. doi: 10.1016/j.apmr.2012.04.034. Arch Phys Med Rehabil. 2012. PMID: 22920448 Review. - Rehabilitative training and plasticity following spinal cord injury.
Fouad K, Tetzlaff W. Fouad K, et al. Exp Neurol. 2012 May;235(1):91-9. doi: 10.1016/j.expneurol.2011.02.009. Epub 2011 Feb 17. Exp Neurol. 2012. PMID: 21333646 Review. - Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
Kanagal SG, Muir GD. Kanagal SG, et al. Exp Neurol. 2009 Mar;216(1):193-206. doi: 10.1016/j.expneurol.2008.11.028. Epub 2008 Dec 11. Exp Neurol. 2009. PMID: 19118552 - Changes in CNS structures after spinal cord lesions implications for BMI.
Martinez M, Rossignol S. Martinez M, et al. Prog Brain Res. 2011;194:191-202. doi: 10.1016/B978-0-444-53815-4.00007-8. Prog Brain Res. 2011. PMID: 21867804 Review.
Cited by
- The molecular basis of experience-dependent motor system development.
Kalb RG, Zhou W, Zhang L. Kalb RG, et al. Adv Exp Med Biol. 2013;782:23-38. doi: 10.1007/978-1-4614-5465-6_2. Adv Exp Med Biol. 2013. PMID: 23296479 Free PMC article. - Movement repetitions in physical and occupational therapy during spinal cord injury rehabilitation.
Zbogar D, Eng JJ, Miller WC, Krassioukov AV, Verrier MC. Zbogar D, et al. Spinal Cord. 2017 Feb;55(2):172-179. doi: 10.1038/sc.2016.129. Epub 2016 Oct 18. Spinal Cord. 2017. PMID: 27752057 Free PMC article. - Modular control of varied locomotor tasks in children with incomplete spinal cord injuries.
Fox EJ, Tester NJ, Kautz SA, Howland DR, Clark DJ, Garvan C, Behrman AL. Fox EJ, et al. J Neurophysiol. 2013 Sep;110(6):1415-25. doi: 10.1152/jn.00676.2012. Epub 2013 Jun 12. J Neurophysiol. 2013. PMID: 23761702 Free PMC article. - Functional rehabilitation of cadmium-induced neurotoxicity despite persistent peripheral pathophysiology in the olfactory system.
Czarnecki LA, Moberly AH, Turkel DJ, Rubinstein T, Pottackal J, Rosenthal MC, McCandlish EF, Buckley B, McGann JP. Czarnecki LA, et al. Toxicol Sci. 2012 Apr;126(2):534-44. doi: 10.1093/toxsci/kfs030. Epub 2012 Jan 27. Toxicol Sci. 2012. PMID: 22287023 Free PMC article. - Electrical stimulation for the treatment of spinal cord injuries: A review of the cellular and molecular mechanisms that drive functional improvements.
Dorrian RM, Berryman CF, Lauto A, Leonard AV. Dorrian RM, et al. Front Cell Neurosci. 2023 Feb 3;17:1095259. doi: 10.3389/fncel.2023.1095259. eCollection 2023. Front Cell Neurosci. 2023. PMID: 36816852 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical