Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus - PubMed (original) (raw)
Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus
Heidi Johansen-Berg et al. Cereb Cortex. 2005 Jan.
Abstract
Parcellation of the human thalamus based on cortical connectivity information inferred from non-invasive diffusion-weighted images identifies sub-regions that we have proposed correspond to nuclei. Here we test the functional and anatomical validity of this proposal by comparing data from diffusion tractography, cytoarchitecture and functional imaging. We acquired diffusion imaging data in eleven healthy subjects and performed probabilistic tractography from voxels within the thalamus. Cortical connectivity information was used to divide the thalamus into sub-regions with highest probability of connectivity to distinct cortical areas. The relative volumes of these connectivity-defined sub-regions correlate well with volumetric predictions based on a histological atlas. Previously reported centres of functional activation within the thalamus during motor or executive tasks co-localize within atlas regions showing high probabilities of connection to motor or prefrontal cortices, respectively. This work provides a powerful validation of quantitative grey matter segmentation using diffusion tractography in humans. Co-registering thalamic sub-regions from 11 healthy individuals characterizes inter-individual variation in segmentation and results in a population-based atlas of the human thalamus that can be used to assign likely anatomical labels to thalamic locations in standard brain space. This provides a tool for specific localization of functional activations or lesions to putative thalamic nuclei.
Similar articles
- Validation of connectivity-based thalamic segmentation with direct electrophysiologic recordings from human sensory thalamus.
Elias WJ, Zheng ZA, Domer P, Quigg M, Pouratian N. Elias WJ, et al. Neuroimage. 2012 Feb 1;59(3):2025-34. doi: 10.1016/j.neuroimage.2011.10.049. Epub 2011 Oct 20. Neuroimage. 2012. PMID: 22036683 - Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging.
Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM. Behrens TE, et al. Nat Neurosci. 2003 Jul;6(7):750-7. doi: 10.1038/nn1075. Nat Neurosci. 2003. PMID: 12808459 - Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct.
Serra L, Cercignani M, Carlesimo GA, Fadda L, Tini N, Giulietti G, Caltagirone C, Bozzali M. Serra L, et al. PLoS One. 2013 Jun 3;8(6):e64578. doi: 10.1371/journal.pone.0064578. Print 2014. PLoS One. 2013. PMID: 23755128 Free PMC article. - Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography.
Hyam JA, Owen SL, Kringelbach ML, Jenkinson N, Stein JF, Green AL, Aziz TZ. Hyam JA, et al. Neurosurgery. 2012 Jan;70(1):162-9; discussion 169. doi: 10.1227/NEU.0b013e3182262c9a. Neurosurgery. 2012. PMID: 22158304 Review. - Thalamic structures and associated cognitive functions: Relations with age and aging.
Fama R, Sullivan EV. Fama R, et al. Neurosci Biobehav Rev. 2015 Jul;54:29-37. doi: 10.1016/j.neubiorev.2015.03.008. Epub 2015 Apr 9. Neurosci Biobehav Rev. 2015. PMID: 25862940 Free PMC article. Review.
Cited by
- A roadmap towards standardized neuroimaging approaches for human thalamic nuclei.
Segobin S, Haast RAM, Kumar VJ, Lella A, Alkemade A, Bach Cuadra M, Barbeau EJ, Felician O, Pergola G, Pitel AL, Saranathan M, Tourdias T, Hornberger M. Segobin S, et al. Nat Rev Neurosci. 2024 Dec;25(12):792-808. doi: 10.1038/s41583-024-00867-1. Epub 2024 Oct 17. Nat Rev Neurosci. 2024. PMID: 39420114 Review. - The integrity of thalamo-dorsolateral prefrontal cortex tract: a key factor in residual consciousness in disorders of consciousness patients.
Jung JY, Yoo YJ, Yoon MJ, Hong BY, Kim TW, Park GY, Lee JI, Lee SH, Im S, Lim SH. Jung JY, et al. Front Neurol. 2024 Aug 14;15:1373750. doi: 10.3389/fneur.2024.1373750. eCollection 2024. Front Neurol. 2024. PMID: 39206298 Free PMC article. - Constraining functional coactivation with a cluster-based structural connectivity network.
Kang I, Galdo M, Turner BM. Kang I, et al. Netw Neurosci. 2022 Oct 1;6(4):1032-1065. doi: 10.1162/netn_a_00242. eCollection 2022. Netw Neurosci. 2022. PMID: 38800456 Free PMC article. - Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery.
Tariciotti L, Mattioli L, ViganĂ² L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Tariciotti L, et al. Front Integr Neurosci. 2024 Feb 15;18:1324581. doi: 10.3389/fnint.2024.1324581. eCollection 2024. Front Integr Neurosci. 2024. PMID: 38425673 Free PMC article. - A phylogenetically-conserved axis of thalamocortical connectivity in the human brain.
Oldham S, Ball G. Oldham S, et al. Nat Commun. 2023 Sep 27;14(1):6032. doi: 10.1038/s41467-023-41722-8. Nat Commun. 2023. PMID: 37758726 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical